Everscalend functional specification

By OCamlPro
Telegram contact: @hra687261

March 20, 2022

Contents

(I__Introductionl 3
(2 High-level system description| 4
2.1 System purpose|o e 4
[2.2 Terms of the system domain|. 4
1 1008 . - . e 6

2.4 System functioning| L e 7
241 Groupsof users|. 7
2.4.2 User capabilities| 7
2421 Supplylo 7

2422 Withdrawl. 7

2423 Borrowl 8

424 Repay|l. o 8

2.4.2.5 Liquidatel 8

2.4.3 Key system algorithms|. oo Lo, 8
[2.4.3.1 Interest acquisition| 8

2432 Tnferestrateindexed 9

B433 Reserved 9

2.4.3.4 vToken exchange rate calculation| 9

12.4.3.5 Account health and borrow capacity calculation| 9

[2.4.3.6 Liquidation|. 10

P437 Module locking mecanismlo e 10

5 Architecture of the System] 10
2.0.1 Main smart contractsl 0oL 11
2.5.1.1 MarketsAggregator| oL 11

[2.5.1.2 Operations modules| 0oL 12

RET3 Oracld. 12

25.1.4 TonTokenWalletl L oL 12

2.5.1.5 RootTokenContractl 12

[2.5.1.6 TIP3TokenDeployer| 13

2.5.1.7 WalletController] 13

25.1.8 UserAccountl L oo 13

12.0.1.9 UserAccountManager| 13

2.5.2 Userinteractions L 14

2.6 Usage scenarios| oo e e e e e e 14
2.6.1 Updating a user’s account health| 14

§ PPLY]. . . e 14

CONTENTS CONTENTS

2.6.3 Withdrawl L 15
BBA _BOITOWl . . . o o o e e 16

§ DAY 17

2.6.6 Liquidatel 18
[3_Risksl 20
BI Fmancialriskd 20
[3.1.1 Imsolvency|. 20
3.1.2 IQUIAIEY] -« . o o o e e e e 20
B3 Unfair liquidation] oot i 20
B.1.4 Centralizationl. e 21

B2 Smart contract risks 21
B21 Unsoundmathl 21
[3.2.2 Non liquidation|. 21
3.2.3 ockingl 21
8.2.4 Visibility]o 21

[4 System Properties| 22
.1 Assumptions| e e 22
4.2 User related properties| e 22
4.3 Market properties|. 23
6__Code auditl 24
5.1 General remarksl e e 25
p.1.1 ypography of Internal Functions| 25
B.12 Constructors without checksl 25

b.2 Contract deployment trom Platform| 26
B2T Possible attackl 26

5.3 Unsafe role assignement| 26
5.4 Internal function names| e 26
5.5 Undefined functiond 27
(.6 Unused functiond 27
.7 Unused modifiers] 27
5.8 Library MarketMath| 27
p.8.1 Function calculateExchangeRatel0 o000 27

p.9 Library Utilities|. o 28
5.9.1 Function calculateSupplyBorrow| 28
EI0 Contract BorrowModule] o o o 29
[5.10.1 Function borrowTokenskFromMarket! 29
e 30

B.11.1 Struct UserMarketInfol oo oo 30
512 Contract Platform| 30
©.12.1 Function initializeContractl oL 30
.13 Module "FloatingPointOperations.sol”| 31
5.13.1 Struct fractionl 31
p.14 Library FPO[. . . .« . . oo o 31
P.14.1 Functioneq| 31
9.14.2 Function simplify|. 31
CONTENTS)

Chapter 1

Introduction

This document contains a functional specification of the “Everscalend” system’s smart contracts.
The source code is available at https://github.com/SV0Icom/everscalend-contracts, com-
mit 8d24e268f9c44bd3e896fb6a28bbf8a42c7027a9. This work is provided as a submission to
the Everscale Formal Methods Sub-Governance Contest #39.

https://github.com/SVOIcom/everscalend-contracts
https://formet.gov.freeton.org/proposal?proposalAddress=0%3A222afd84a41bb8c70517d692d0a4a28c42898b1d3520279a86878202f5730a0f

Chapter 2

High-level system description

2.1 System purpose

Everscalend is a DEFI (DEcentralized FInance) lending and borrowing system implemented on
the Everscale Blockchain. Its main purpose is to provide Everscale users with a realiable way
to lend and borrow cryptocurrency tokens. It makes it possible for users to generate profits on
tokens they supply for lending and to temporarily acquire tokens by borrowing them instead of

buying them.

2.2 Terms of the system domain

Term

Definition

Interest rate

The rate of profit that is generated for the suppliers of tokens. The
interest rates in Everscalend are algorithmically calculated and they
increase when the borrowing demand increases and decrease when it
decreases.

Market

A pool of tokens of the same kind where all the tokens supplied by
the users are stored. It also holds information like the exchange rate
and reserve factor etc.

vToken

A virtual token, it is a currency that only exists on Everscalend and
it is used to determine the amount of tokens that a supplier owns
in a market. vTokens are acquired by the users when they supply
some tokens to the market. When interest rate is accumulated on the
supplied tokens to the market, the exchange rate from the vTokens to
the real tokens increases to account for the accumulated interest that
the suppliers will get to retrieve when they withdraw their tokens.

Collateral

An amount of vTokens that a borrower has to have in order to borrow
some amount of real tokens. Everscalend like other DEFT lending
systems is over-collateralized which means that the collateral has to
be worth more than the amount of tokens that will be borrowed.

Collateral factor

Ranging from 0 to 1, it represents the amount of tokens that can be
borrowed for a collateral. e.g. a collateral factor of 0.9 allows the
borrowing of a number of tokens worth 90% of the collateral.

2.2. TERMS OF THE SYSTEM DOMAIN CHAPTER 2. HIGH-LEVEL SYSTEM

DESCRIPTION

Term

Definition

Account health

The sum of the USD value of a user’s supplied tokens divided by the
sum of the USD value of all the tokens they borrowed. It is used to
determine whether a user is eligible for liquidation or not. When the
account health is greater than one, we say that the user’s account is
healthy, otherwise it is unhealthy.

Borrowing capacity

The sum of the USD value of a user’s supplied tokens minus the sum
of the USD value of all the tokens they borrowed. It represents the
maximum worth of the tokens the user can borrow.

Liquidation

The process in which some user’s debt is liquidated by another user,
by paying a portion of the owed tokens in exchange for the borrower’s
vTokens at a better exchange rate than the market price.

Liquidation Multiplier

A value superior to 1. It is the amount by which the amount of
vTokens that the liquidator should get by market price is multiplied
to increase the amount they really get.

Reserve factor

Ranging from 0 to 1, it represents the portion of the interest rate
that should be stored in the reserve whenever it is acquired.

Reserve

A protected portion of the accumulated interest rate on the supplied
tokens. It serves as a protection of the suppliers’ tokens in case they
do some borrowing and become liquidable. The liquidators will only
be able to take the tokens that aren’t part of the reserve (Which is
referred to as the cash).

Index

Refers to the interest rate index, which is a value that captures
the history of interest rates of a market. It is updated after each
transaction to compound the interest since the previous index.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

2.8, MATHEMATICAL NOTATIONS CHAPTER 2. HIGH-LEVEL SYSTEM

DESCRIPTION

2.3 Mathematical notations

The following mathematical notations are used in the document to simplify the equations.

vT(T): Type of vIoken that have T' as an underlying token.

ER(T;, Ty): Exchange rate from the token T; to the token T, aka the x in: 1 T; = 2 T5.

TBA(T): Amount of borrowed tokens in the market of the token 7'

UR(T): Utilization ratio of the market of the token T

UM(T): Utilization multiplier of the market of the token 7.

UbR(T): Utilization base rate of the market of the token T

BIR(T): Borrowing interest rate of the market of the token 7'

RF(T): Reserve factor of the market of the token T'.

rTB(T): Real token balance of the market of the token T

vTB(T): vToken balance of the market of the token T', aka the total amount of vTokens
produced by the market.

Res(T) Amount of tokens stored in the reserves of the market of the token 7.

CF(T) Collateral factor for a token T.

LMul(T) Liquidation multiplier of the market of the token T

AH (u) A user u’s account health.

BC(u) A user u’s borrowing capacity.

BI(u): A user u’s borrowing information.

USA(u, T) A user u’s supplied amount of tokens of type T

USA(u, T): A user u’s borrowed amount of tokens of type 7.

TSAV(u): Value in USD of a user u’s total supplied amount.

TBAV(u): Value in USD of a user u’s total borrowed amount.

wwTA(u, T): Amount of vTokens that a user u owns which have as an underlying token 7.

Ind(T,n): nth interest rate index of the market of the token 7.

Indi(T): Latest interest rate index of the market of the token T'.

SIF(T): Simple interest factor of the market of the token 7'

AI(T): Accumulated interest of the market of the token T

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

2.4. SYSTEM FUNCTIONING CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

2.4 System functioning

The Everscalend system uses markets, which are pools of fungible tokens with algorithmically
calculated interest rates, based on the supply and borrow demand for the tokens they hold. Each
market is unique to a cryptocurrency, and contains a transparent and publicly-inspectable ledger,
with a record of all transactions and historical interest rates.

The lenders and the borrowers of tokens interact directly with the system, earning and paying
a variable interest rate, without having to negotiate terms such as the interest rate or the value
of collateral with a peer or counterparty.

In this section we describe how the system works.

2.4.1 Groups of users

A user may be part of three different groups of users with different rights:

e The admin group (or owner as there is only one user in the group per contract) who is the
deployer of the main contracts of the system like MarketAggregator, WalletController
or Oracle. Being part of this group gives the use the right to modify all the parameters of
the system, and in particular to assign users to groups.

e The Upgrader group: being part of this group gives the right to upgrade the code of the
contracts.

e The Parameter changer group: being part of this group gives the right to modify some of
the parameters of the system.

All other users can only interact with the system to realise the market opeartions (supply,
borrow ...) without being able to manually change the parameters of the system.

2.4.2 User capabilities

In this section we describe what the users can do by using the system.

2.4.2.1 Supply

A user that wishes to make a certain amount of their tokens available for borrowing has to supply
them to the system. The supplied tokens are then aggregated to the tokens of the same kind
that were supplied by other users.

The supplier receives vTokens for their supply that they can use as collateral to borrow other
tokens. vTokens are a currency used to represent how many of the real tokens in the market a
user can withdraw, they also determine how many he can borrow of other tokens.

2.4.2.2 Withdraw

A user who owns vTokens can pay with them to withdraw the tokens he supplied. The user can
do it at any time provided that their account is healthy, aka AH (u) > 1 with AH(u) being the
user u’s account health

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 7

2.4. SYSTEM FUNCTIONING CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

2.4.2.3 Borrow

To borrow a certain amount of some token:

e There have to be enough tokens in the market for the borrowing.

e The borrowed amount has to be within the user’s borrowing capacity, noted BC'(u) with
u being the user.

BC(u) represents the amount of vTokens that the user can still use as collateral to borrow.
Once that amount is reached, the user can no longer perform any action that requires them to
have free vTokens like borrowing or withdrawing.

2.4.2.4 Repay
A borrower can repay the amount they borrowed by returning it to the market. By doing that
the collateral they set for the borrowing is freed and can be used to borrow other tokens.

2.4.2.5 Liquidate

When a user’s account is unhealthy, aka (AH(u) < 1), the liquidation of his debt becomes
possible. The liquidation process consists of selling the borrower’s collateral vTokens at a discount
in exchange for the repayment of the borrower’s debt or a portion of it.

The purpose of this mecanism is to financially incentivize the liquidators to add liquidity to
the system and pay other users’ debts.

2.4.3 Key system algorithms

2.4.3.1 Interest acquisition

The values of interest rates increase when the demand is high and decrease when it is low. The
calculation of the accumulated interest requires some intermediary variables:

e The utilisation rate UR(T) for the market of the token T

TBA(T)

UR(T) = TBA(T) + rTB(T)

The utilisation rate unifies supply and borrowing demand into a single variable.

e The borrowing interest rate BIR(T) for the market of the token T"
BIR(T) = UR(T) * UM(T) + UbR(T)
e the simple interest factor SIF(T') for the market of the token T
SIF(T) = BIR(T) x At

with At being the time difference in seconds between the current time and the last moment
at which the interest rate was calculated.

The accumulated interest for the market of the token 7' can then be calculated as follows:

AI(T) = TBA(T) x SIF(T)

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 8

2.4. SYSTEM FUNCTIONING CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

2.4.3.2 Interest rate indexes

Each time the interest rate is calculated in a certain market, the interest rate index associated
to that market is updated. New indexes are calculated as follows:

Ind(T,n) = (SIF(T)+1) x Ind(T,n — 1)

With: Ind(T,0) = 1.

2.4.3.3 Reserves

When interest is accumulated, a portion of it, the size of which is determined by the reserve
factor, is put in a reserve. The rest of it is stored as cash. After accumulating the interest, the
reserve is updated by adding (AI(T) x RF(T)) to it.

The purpose of the reserves is to protect a portion of the lenders’ accumulated interest so
that they don’t lose everything in case of liquidation. Only their cash can be liquidated.

2.4.3.4 vToken exchange rate calculation

As stated previously the exchange rates from vTokens to real tokens depends on the supply and
borrowing demand for those tokens. It is calculated as follows:
rTB(T)+ TBA(T) — Res(T)

vTB(T)

ER(WT(T), T) =

2.4.3.5 Account health and borrow capacity calculation

A user u’s account health AH (u) determines whether or not it is liquidable, if AH (u) < 1 then it
is otherwise it isn’t. If the user’s account is liquidable then the user can’t withdraw their tokens
or borrow more tokens before some other users liquidiate their debt or they supply more tokens
to the market to improve their account’s health. The account’s health is calculated whenever
the user tries to perform any market operation or gets one of his loans liquidated.

Calculating AH (u), first requires the calculation of The value of the user u’s supplied amount
TSAV (u) and the value of his borrowed amount TBAV (u) as follows:

wTA(u, T) x ER(vT(T), T)

TSA = F(T
SAV () ZT: ER(T, USD) x CF(T)
And
TBAV (u) = > bval(T, ba, ind)
(T,ba,ind)eBI(u)
With:
0 ba =0
(ba x Indl(T))/ind)
bval(T, ba, ind) — ER(T. USD) ba # 0 A Indl(T) # ind
ba
S — Indl(T) =i
ER(T. USD) ba # 0N Indl(T) = ind

Where BI(u) is the borrow information for the user u, which is in the form of a collection
of triplets containing the type of the borrowed token, the amount that was borrowed and the
interest rate index at the moment of the borrowing.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 9

2.5. ARCHITECTURE OF THE SYSTEM CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

The user’s account health is then calculated as follows:

_ TSAV (u)
AH(u) = TBAV (u)

A user’s borrowing capacity is a value in USD that determines how many vTokens a user can
use as collateral or redeem, the limit being that the vToken’s worth has to be less than the user’s
borrowing capacity. The borrowing capacity is calculated as follows:

BC(u) = TSAV (u) — TBAV (u)

2.4.3.6 Liquidation

The amount of vTokens the liquidator gets is calculated thanks to the liquidation multiplier
LMul(T) which is the value by witch the amount of tokens they would get at market price is
multiplied to increase it. If a liquidator wants to repay a portion RP of a borrower w’s debt in
tokens of type T, the amount of the borrower’s vTokens that the liquidator will get (vTA) is
calculated as follows:

vT'A=min(RP x ER(T,vT(T)) x LMul(T),uwTA(u, T))

Where min is a function that returns the minimum of two values. The value of the liqudation
multiplier is set manually by the admin.

2.4.3.7 Module locking mecanism

To avoid messing up with the pools of tokens and market parameters while a user is performing
an operation, a locking mecanism is used. It’s purpose is to prevent the modification of the
data that is used during the user’s operation. The locks are especially necessary when trying
to extract tokens from the markets by borrowing or withdarwing, or from other users through
liquidation.

Such locks are used in:

e BorrowModule: The lock prevents other users from borrowing at the same time.

e LiquidationModule: In this case the lock is on the liquidated user, the purpose is to
prevent more than one user liquidating the same user’s debt at the same time.

e WithdrawModule: To prevent other users from withdrawing while one of them has started
that process.

e UserAccount: This conract uses two locks called borrowLock and liquidationLock. As
their names suggest, borrowLock locks the user’s account during the processing of a bor-
row request, stopping the user from doing another one before the current one is finished.
The liquidationLock stops the user from withdarwing or borrowing while he is being
liquidated.

2.5 Architecture of the System

Figure shows a simplistic representation of the architecture of the system. The main smart
contracts are shown with their names only while the interfaces, libraries and the smart contracts
that are not necessary for comprehension were omitted. The smart contracts are connected with
arrows which are meant to show interactions between them, these interactions will be described
below.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 10

2.5. ARCHITECTURE OF THE SYSTEM CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

SupplyModule WithdrawModule

BorrowModule LiquidationModule RepayModule

TIP3TokenDeployer
MarketsAggregator UserAccountManager
RootTokenContract
UserAccount
Oracle WalletController TonTokenWallet

Figure 2.1: System architecture with smart contract interactions

2.5.1 Main smart contracts

2.5.1.1 MarketsAggregator
It mainly serves as a container for all the necessary information surrounding the markets, like
the interest rates, the exchange rates and the borrow and supply amounts of each market.
Functionalities:

e Adding and removing markets.

e Updating the information on the markets. As a result of market operations from users
(like supplying, borrowing ... etc), changes in the prices of the supported tokens or market
parameter modifications by the admin or privileged users.

Interactions:

e Oracle: to get token price updates.

e Operations modules: to perform market operations.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 11

2.5. ARCHITECTURE OF THE SYSTEM CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

e UserAccountManager: to update account health after performing operations.

e WalletController: to transfer tokens to(from?) when necessary.

2.5.1.2 Operations modules
These smart contracts are used to help perform the market operations by doing the necessary
math for these operations and fetching the necessary up to date data to perform these operations.
The smart contracts:

e SupplyModule

o WithdrawModule

BorrowModule

RepayModule

LiquidationModule

2.5.1.3 Oracle

It is used by the MarketsAggregator smart contract to get price updates on the supported tokens
in the markets.

2.5.1.4 TonTokenWallet

It serves as a TIP-3 token wallet and it handles token transfers to and from the wallet. Ever-
scalend follows the TIP-3 token standard and these wallets are necessary to interact with the
system. They can be delpoyed either by RootTokenContract or a user who has the address of
the RootTokenContract associated to the wallet’s token.

Functionalities:
e Tranfer tokens to and from the wallet.
e Deploy a receiver’s TonTokenWallet and transfer tokens to it.

e Burn tokens.

2.5.1.5 RootTokenContract

A contract that is deployed by a token owner and stores information about the root token (like
its name, symbol and total supply).

Functionalities:
e Minting tokens.
e Deploying instances of TonTokenWallet.
e Updating the information on the root token.

e Change root token owner.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 12

2.5. ARCHITECTURE OF THE SYSTEM CHAPTER 2. HIGH-LEVEL SYSTEM
DESCRIPTION

2.5.1.6 TIP3TokenDeployer

it deploys RootTokenContract contracts.

2.5.1.7 WalletController

It’s the smart contract that controls all the TTP-3 wallets of the markets and managers the
operations that require token transfers to and from those wallets.

Functionalities:

Adding and removing market wallets.

Getting information about market wallets.

Decoding the payloads of messages that require TIP-3 token transfers and adds necessary
information like message origin and token amount before passing them to MarketsAggre-
gator.

Allows the users to perform the supply, repay and liquidate operations.

Interactions:

e MarketsAggregator: to communicate to it the details of the market operations that require
TIP-3 token transfer into the wallets of the markets.

e TonTokenWallet: to do tokens transfers in a user’s wallet.

2.5.1.8 UserAccount

It’s used to store information about how a user interacts with the markets, like how much they
borrowed from which market and how much they supplied to which market. It also allows the
user to perform the borrow and withdraw operations.

It interacts only with UserAccountManager, which can request the information and update
it.
2.5.1.9 UserAccountManager
UserAccountManager serves as an intermediary between the user, the UserAccount contract, the
MarketsAggregator contract and the market operations modules.
Functionalities:

e Deploys UserAccount contract.

e Handles requests and data transfers from MarketsAggregator and market modules to the

UserAccount contract.

Interactions:

e MarketsAggregator: to calculate user account health and perform market operations that
were requested by the user.

e market modules: to perform market operations.

e UserAccount: to get user information and to update it.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 13

2.6. USAGE SCENARIOS CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

2.5.2 User interactions

The users mainly interact with TonTokenWallet and UserAccount to perform the market opera-
tions mentioned previously. The operations in which the users have to request tokens are done
through the UserAccount (withdraw, borrow) smart contract, while the operations in which the
users have to send tokens are done through TonTokenWallet (supply, repay, liquidate).

2.6 Usage scenarios

This section contains low level descriptions of usage scenarios which describe how the users
interatct with the smart contracts and how the smart contracts interact between them.
Used notation:

UA: UserAccount UAM: UserAccountManager
MA: MarketsAggregator | WC: WalletController
TTK: TonTokenWallet SM: SupplyModule

WM: WithdrawModule BM: BorrowModule

RM: RepayModule LM: LiquidationModule

In the source code a lot of the interactions between the smart contracts are done with the
intermediary of interfaces. In these usage scenarios we ignore the interfaces and present only the
interactions between the contracts which the interfaces refer to.

2.6.1 Updating a user’s account health

We start with a "sub-scenario” which is the one of updating the user’s account health. This
scenario was added because it’s used by the other ones and to avoid repeating it everytime, we
describe here what happens when we say that the user’s account health is updated.

1. UAM.calculateUserAccountHealth is called from |UA| with a payload.
2. UAM.calculateUserAccountHealth calls MA.calculateUserAccountHealth which:

2.1. Updates the markets’ information and calculates the user’s account health.
2.2. If the user’s account is unhealthy a LiquidationPossible event is emitted.
2.3. A call is made to UAM.updateUserAccountHealth with the new account health.
3. UAM.updateUserAccountHealth calls UA.updateUserAccountHealth which calls, depend-

ing on the operation code provided in the payload, either UAM.requestTokenPayout,
UAM.returnAndSupply or transfers the remaining gas to a povided address.

2.6.2 Supply

1. The user makes an internal transfer through TTK.internalTransfer with a payload con-
taining the supply operation code.

2. The payload with information about the token wallet is passed to
WC.tokensReceivedCallback.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 14

2.6. USAGE SCENARIOS CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

The payload is decoded and after checking the operation code a call is made to
MA.performOperationWalletController with the necessary information about the supply
operation.

MA.performOperationWalletController calls the Oracle to request the newest token
prices, the response is receive with MA.receiveAllUpdatedPrices which updates all the
prices in the markets and calls MA.performOperation.

MA.performOperation calls SM.performAction which:

5.1. Calculates the amount of vTokens to provide the user.

5.2. Builds a data structure with the changes to the market (market delta) to which the
supply was made.

The market delta is sent to MA.receiveCacheDelta which updates market informations
and calls SM.resumeOperation with the new market information.

The information about the supply operation is then sent to UAM.writeSupplyInfo which
transfers it to UA.writeSupplyInfo.

UA.writeSupplyInfo calls UAM.calculateUserAccountHealth with a payload having the
NO_OP operation code.

After updating account health, the remaining gas is transferred back to the supplier.

2.6.3 Withdraw

1.

The user calls UA.withdraw with the address of their TIP-3 wallet, the ID of the market
to which their supplied their tokens and the amount their wish to withdraw.

. UA.withdraw calls UAM.requestWithdraw with the withdrawal information.

UAM.requestWithdraw calls MA.performOperationUserAccountManager with the with-
draw operation code.

. MA.performOperationUserAccountManager calls the Oracle to request the newest token

prices, the response is receive with MA.receiveAllUpdatedPrices which updates all the
prices in the markets and calls MA.performOperation.

MA.performOperation calls WM.performAction.

WM. performAction locks the module WM and requests from UAM the user’s borrow and supply
information which is provided by UA and goes through UAM.receiveWithdrawInfo which
sends it to WM.withdrawTokensFromMarket.

WM.withdrawTokensFromMarket checks that:

e The user’s account is healthy.

e The user supplied at least as many tokens as the amount that they wish to withdraw.

e The worth in USD of the user’s free collateral is equal or greater than the worth in
USD of the amount of tokens they wish to withdraw.

Then calls MA.receiveCacheDelta with the withdrawal information.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 15

2.6. USAGE SCENARIOS CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

10.

11.
12.

13.
14.

MA.receiveCacheDelta updates market information and calls WM.resumeOperation with
the new market information.

WM.resumeOperation unlocks the module WM and sends the withdrawing information to
UAM.writeWithdrawInfo which calls UA.writeWithdrawInfo which:

9.1. updates the user’s supply information by decreasing it with the withdrawn amount.

9.2. builds a payload with the amount of tokens that need to be sent, the user’s TIP-3
wallet address and the opeartion code REQUEST_TOKEN_PAYQOUT.

A call is made to UAM.calculateUserAccountHealth with the user’s new supply and
borrow information.

After the user’s account health is updated, UAM. returnAndSupply is called.

UAM.returnAndSupply calls MA.requestTokenPayout and WM.unlock (which does nothing
because the module was unlocked during the call to WM.resumeOperation).

MA.requestTokenPayout calls WC.transferTokensToWallet which calls WC.transfer.

WC.transfer calls TTK.internalTransfer which updates the user’s balance with the
amount of tokens that he requested to withdraw.

2.6.4 Borrow

1.

9.

The user calls UA.borrow with the address of their TIP-3 wallet, the ID of the market from
which they wish to borrow and the amount of tokens they wish to borrow.

. UA.borrow locks the user account and calls UAM.requestIndexUpdate with the borrowing

information.

UAM.requestIndexUpdate calls MA.performOperationUserAccountManager with the
BORROW_TOKENS operation code.

MA.performOperationUserAccountManager calls the Oracle to request the newest token
prices, the response is receive with MA.receiveAllUpdatedPrices which updates all the
prices in the markets and calls MA.performOperation.

MA.performOperation calls BM.performAction.

BM.performAction locks the module BM and requests from UAM to update the market’s
indexes which is done by calling UA.borrowUpdateIndexes.

UA.borrowUpdateIndexes gets from the markets the updates indexes and passes them
along with the user’s borrow and supply into to UAM.passBorrowInformation which calls
BM.borrowTokensFromMarket.

BM.borrowTokensFromMarket checks that:

e That there are enough tokens in the market for the borrowing.
e That the user’s account is healthy.

e That the user has enough collateral to make the borrowing.

A TokenBorrow event is emitted with the borrowing information.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 16

2.6. USAGE SCENARIOS CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

10.

11.

12.

13.

14.
15.
16.

BM.borrowTokensFromMarket calls MA.receiveCacheDelta with the borrowing informa-
tion and the information about the changes to the market after the borrowing.

MA.receiveCacheDelta updates the market information and calls BM.resumeOperation
with the new market information.

BM.resumeOperation unlocks the module BM and sends the borrowing information to
UAM.writeBorrowInformation which calls UA.writeBorrowInformation which:

12.1. Updates market information and the user’s borrowing information.
12.2. Unlocks UA.
12.3. Builds a payload with the REQUEST_TOKEN_PAYOUT operation code.

UAM. calculateUserAccountHealth is called with the payload as well as the user’s supply
and borrow information.

After the user’s account health is updated, MA.requestTokenPayout is called.
MA.requestTokenPayout calls WC.transferTokensToWallet which calls WC.transfer.

WC.transfer calls TTK.internalTransfer which updates the user’s balance with the
amount of tokens that they borrowed.

2.6.5 Repay

1.

The user makes an internal transfer through TTK.internalTransfer with a payload con-
taining the repay operation code.

The payload with information about the token wallet is passed to
WC.tokensReceivedCallback.

The payload is decoded and after checking the operation code a call is made to
MA.performOperationWalletController with the necessary information about the supply
operation.

MA.performOperationWalletController calls the Oracle to request the newest token
prices, the response is receive with MA.receiveAllUpdatedPrices which updates all the
prices in the markets and calls MA. performOperation.

MA.performOperation calls RM.performAction which calls UAM.requestRepayInfo.

UAM.requestRepayInfo calls UA.sendRepayInfo which updates market information and
transfers it with information about the user’s TIP-3 wallet to UAM.receiveRepayInfo
which calls RM.repayLoan.

RM.repayLoan calculates how much of the loan will be repayed and the changes to the
markets after the repayment. A RepayBorrow event is emitted with the repayment infor-
mation. That information is then sent to MA.receiveCacheDelta which updates market
informations and calls RM.resumeOperation with the new market information.

RM.resumeQOperation calls UAM.writeRepayInformation which transfers it to
UA.writeRepayInformation.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 17

2.6. USAGE SCENARIOS CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

9. UA.writeRepayInformation calls UAM.calculateUserAccountHealth with one of the two
operation codes:
e REQUEST_TOKEN_PAYQUT if there are leftover tokens after the repayment.
e NO_OP otherwise.

10. After updating account health, if there are leftover tokens after the repayment, they are
transferred to the user’s TIP-3 wallet.

2.6.6 Liquidate

1. The user makes an internal transfer through TTK.internalTransfer with a payload con-
taining the liquidation operation code.

2. The payload with information about the token wallet is passed to WC.tokensReceivedCallback.

3. The payload is decoded and after checking the operation code a call is made to
MA.performOperationWalletController with the necessary information about the liqui-
dation.

4. MA.performOperationWalletController calls the Oracle to request the newest token
prices, the response is receive with MA.receiveAllUpdatedPrices which updates all the
prices in the markets and calls MA.performOperation.

5. MA.performOperation calls LM.performAction which calls
UAM.requestliquidationInformation.

6. UAM.requestLiquidationInformation calls UA.requestLiquidationInformation which
updates market’s indexes and calls UAM.receiveLiquidationInformation with the new
indexes and the user’s supply and borrow information.

7. UAM.receiveliquidationInformation calls LM.1liquidate which:
(a) Checks the account health of the user that is targeted for liquidation to check that it
is still required.

(b) Selects the minimum between the provided amount of tokens for the liquidation and
the borrowed amount by the targeted user as the liquidation amount.

(c) Calculates the USD value of the liquidation amount.
(d) Calculates the how many of the targeted user’s collateral to seize.

(e) Emits a TokensLiquidated event with the liquidation information, update the mar-
kets and the liquidated user’s borrow information.

(f) Calls MA.receiveCacheDelta which updates market informations and calls

RM.resumeOperation with the new market information.

8. LM.resumeOperation recovers the sent information and passes it to UAM.seizeTokens
which calls UA.liquidateVTokens.

9. UA.liquidateVTokens updates the user’s borrow and supply information and calls
UAM.grantVTokens.

10. UAM.grantVTokens calls UA.checkUserAccountHealth on the target user’s account and
wallet addresses to check their account health. Also calls UA.grantVTokens.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 18

2.6. USAGE SCENARIOS CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION

11. UA.grantVTokens checks the liquidator’s account health and builds a payload with the
operation code RETURN_AND_UNLOCK to pass to the function that checks the user’s account.

12. Once the new user’s account health is recovered UAM.returnAndSupply is called.

e if there are leftover tokens after the liquidation then a call is made to
MA.requestTokenPayout with the tokens to return and the liquidator’s TIP-3 wallet.

e A call is made to LM.unlock to unlock it and return the remaining gas to the liquida-
tor’s wallet.

13. MA.requestTokenPayout calls WC.transferTokensToWallet.

14. A call is then made to TTK.transfer which calls TTK.internalTransfer to update the
user’s balance by increasing it with the returned amount of tokens.

CHAPTER 2. HIGH-LEVEL SYSTEM DESCRIPTION 19

Chapter 3

Risks

In this chapter we present the potential risks that can threaten the Everscalend System. Some
of these risks are more general to DEFI systems, some others are specific to the Everscalend
system. We separate the risks by type into two categories, financial risks, which originate from
the market mechanics of the system and smart contract risks, which are the risks that are usually
present in smart contract source code.

3.1 Financial risks

3.1.1 Insolvency

Insolvency is when a borrower’s loans become worth more than their collateral. In this case
neither they nor the liquidators are incentivized to repay the loan, which removes liquidity from
the market since these users will hold on to loans that will not be repaid. Insolvency can happen
if the underlying tokens of the collateral vTokens lose their value quickly or the borrowed tokens’
price increases rapidly.

3.1.2 Illiquidity

Illiquidity is when there aren’t enough tokens in the market for a supplier to do a withdrawal or
for a borrower take out a loan. It is problematic because users are supposed to have control over
their tokens and be able to withdraw them whenever they want to, given that their account’s
health allows it. Illiquidity can happen if the price of the borrowed token increases rapidly also,
that will disincentivise the borrowers and the liquidators from repaying the loan as they would
rather keep holding their tokens or selling them. Same as the suppliers, which will lead to a bank
run (an event in which suppliers will try to withdraw their supplied tokens as quickly as possible
to avoid losing them) and the consequence of it is that the slowest suppliers, especially if they
want to borrow big amounts, will lose some or all of their tokens since the loans aren’t getting
repaid.

3.1.3 Unfair liquidation

To determine whether or not a user’s borrowings should be liquidated. The Everscalend system
checks if their account is healthy. If it isn’t then they can be liquidated. The issue is that if
a user has only one borrowing in which the borrowed tokens price jumps quickly and decreases

20

3.2. SMART CONTRACT RISKS CHAPTER 3. RISKS

their borrowing capacity to zero or less. All their borrowings become liquidable. Which makes it
possible for liquidators to target only the cheapest ones, to make sure that the borrower’s account
stays unhealthy for as long as possible, so they can profit off of it, which could be considered
unjust for the borrower especially if they have many borrows and only one that causes their
account to be unhealthy. This will make the users weary of it happening to them and less likely
to make many borrowings, especially big ones.

3.1.4 Centralization

The risk that comes with having an administrator or super user role which gives the detainer
of that role the capability to unilaterally and arbitrarily modify the functioning of the system.
Especially since many values like the collateral factor and liquidation multiplier are editable with
an admin role, he can also decide who can and who can’t change market parameters. Therefore
control over those parameters and who and how they can be changed need to be clarified. There
needs to be a guarantee that one super user can’t manually and unilaterally modify the entire
functioning of the system in a way that doesn’t benefit the market and the users.

3.2 Smart contract risks

3.2.1 Unsound math

Math operations use approximations and rounding. It could lead in some particular cases to
errors that could affect the functioning of the system or introduce vulnerabilities that can be
taken advantage of.

3.2.2 Non liquidation

To determine whether a user’s loans can be liquidated or not, his account health has to be
calculated, if his account is unhealthy a notification is sent to the system informing the other
users of that. In Everscalend the user’s account health is calculated whenever they try to perform
some operation. If the checks are not regularly and externally done, a user who does not perform
any operation for a while, can end up having an unhealthy account without it being notified to
the other users of the system, which could lead to the liquidation not happening. A user can
also wait without doing any operation, until their account health raises back again or they get
enough tokens to suplly to the market to raise it by themselves.

3.2.3 Locking

Using locks in programs is sometimes necessary but it is always tricky. The developers have the
make sure that locks are locked and unlocked at the right times. Otherwise there are various
risks like data corruption or permanently locking some code and making it unusable. There is
also the risk of the locks taking too long to be unlocked, making the system less performant.

3.2.4 Visibility

It involves all the risks of having functions in contracts that are accessible to users which are not
suppposed to be able to use them. Especially if they are functions that write information on the
system and significantly affect it’s functioning.

CHAPTER 3. RISKS 21

Chapter 4

System Properties

This chapter lists the system properties. The mathematical notations defined in are used.

4.1

Assumptions

No runtime errors (division by zero, out of bounds access ... etc).

Parameters are set in a way that favors the interest of the market and its users. And more
generally the deployers of the system know what they are doing and do not make critical
mistakes like accidentally removing markets or others.

External informations like token prices are correct (no corrupted data like tokens having
no price or being worth zero USD).

Users are not able to perform any operation that doesn’t fit into their role.

The mathematical calculations are correct (When calculating interest accumulation, liqui-
dation grants ... etc).

User related properties

A user that supplied tokens of type T to the system gets an amount of vT'(T) that is equal
to the number of T' tokens multiplied by ER(T,vT(T)).

A user can borrow a certain amount of tokens if that amount multiplied by the collateral
factor of the market from which he wishes to borrow is worth less than his borrowing
capacity.

Withdarwing and borrowing can only be done by a user with a healthy account.

The amount of tokens of type T a user can withdraw is determined by how many he owns
of vT(T). That amount has to be less than or equal to his number of vT(T") multiplied
by ER(vT(T), T).

Withdrawing tokens of type T' decreases the user’s balance of vT'(T) by the number of T'
tokens they wish to borrow multiplied by ER(T,vT(T)).

22

4.3. MARKET PROPERTIES CHAPTER 4. SYSTEM PROPERTIES

4.3

Repaying a loan improves a user’s account health and increases their borrowing capacity.

Liquidating a loan of tokens of type T; which was taken by a borrower who used vTokens
of type vT(Ts2) as collateral decreases the liquidators balance of T'; tokens and increases
their balance of of vT'(Tr,) vTokens with the right amounts.

Market properties

Operations are only performed by the users which belong to the groups that are allowed
to perform those operations.

Contracts, functions and users who are locked during the perfoming of some operation
are unlocked as soon as the critical phase (Which usually is the moment in which data in
written in some contract that can be accessed by other users or contracts) of the operation
is passed.

Withdraw and borrow operations can only withdraw or borrow as many tokens as there
are in the market.

Liquidation cannot lead to seizing tokens stored in the reserves.
All operations interacting with markets can only be performed if the market exists.

The value of ER(vT(T), T) increases after each time the interest is accumulated.

CHAPTER 4. SYSTEM PROPERTIES 23

Chapter 5

Code audit

This chapter presents an audit of Everscalend’s smart contracts and lists the issues that were
encoured in the source code. During the audit, we used the following classification of our findings
into three kinds of issues:

e Critical Issues: such issues can lead to taking ownership of resources (tokens, contracts),
or the disabling of the system:;

e Major Issues: such issues can lead to a decrease in the quality of the system, or a temporary
loss of availability;

e Minor Issues: Such issues do not impact the functioning of the system itself. For example,
improvements to the readability of the code, it’s structure, etc.

We found 3 critical issues, 3 major issues and 8 minor issues during this audit of the contracts.
Some of the issues are duplicated in multiple files.

e 3 Critical Issues:
e 3 Major Issues:

e 8 Minor Issues:

For easier access to the issues, we provided a table of the found issues below.

24

5.1. GENERAL REMARKS CHAPTER 5. CODE AUDIT

Table of all Found Issues

|Critical i1ssue: Unprotected constructors in many contracts| 26
|Critical issue: Unsafe role assignement in IRoles.sol| 26
|Minor issue: Internal function names|. L. 26
IMinor issue: Undefined functions| oo 0oL 27
IMinor issue: Unused functions| o oL 27
[Minor issue: Unused modifiers], 27
[Minor issue: Syntax Error in MarketMath.calculateExchangeRate| 28
[Minor issue: Unintuitive function namel 29
ICritical issue: Math error in BorrowModule.borrowTokensFromMarket| 30
Minor issue: Unused struct field in UserMarketInfol 30
[Major issue: tvm.accept in a private function| 31
[Minor issue: Unintuitive struct field namel. 31
[Major issue: Math error in FPO.eq|. 31
[Major issue: Math issue in FPO.SimpLify] . - - « -« « v v v v v vt oo e e 32

5.1 General remarks

In this section we present some recurrent issues that were encountered in the source code and
some general good practices that should be respected.

5.1.1 Typography of Internal Functions

A good coding convention is to use typography to visually discriminate public functions and
internal functions, for example using a prefix such as _.

5.1.2 Constructors without checks

Contract constructors should always at the very least verify that the contract’s public key is set
and that the deployer is the owner of the contract. This is important especially in the case in
which the contract has arguments that set the state variables. If it is not done, it opens the gate
to various kinds of attacks.

CHAPTER 5. CODE AUDIT 25

5.2. CONTRACT DEPLOYMENT FROM PLATFORM CHAPTER 5. CODE AUDIT

5.2 Contract deployment from Platform

See |E| ! |g!

Other than the ‘RootTokenContract® and ‘TONTokenWallet‘ contracts, all the
other contracts have unprotected constructors and a comment that says that
the contract will be deployed from the Platform. That does not mean that it
is no longer necessary to check that the deployer of the contract is the owner
of the contract. It is especially dangerous in the contracts which set the owner
through the constructor like: ‘MarketAggregator, ‘BorrowModule‘, ‘Liqui-
dationModule‘, ‘RepayModule’, ‘SupplyModule‘, ‘WithdrawModule‘, ‘Oracle,
‘TTP3TokenDeployer, ‘UserAccount’, ‘UserAccountManager‘, ‘Platform‘ and
‘WalletController*.

5.2.1 Possible attack

It makes it possible to perform phishing attacks by deploying fake contracts with which the users
can interact with. So instead of interacting with the real contract they interact with the fake
one.

If a malicious user deploys a fake ‘UserAccountManager* which will deploy user’s accounts.
And one of the users requests a withdraw of their tokens. The owner of the fake ‘UserAccount-
Manager‘ can either block the transaction stopping the user’s from withdrawing their tokens, or
ask them for a fee before processing their request.

5.3 Unsafe role assignement

The role setter functions setUpgrader and setParamChanger in the IRoles
abstract contract (file: ”IRoles.sol”) allow the contract owner to assign the
upgrader or parameter changer role to the provided address or unassign it. The
function should test that the provided address’s value is not zero. Otherwise
the owner can mistakingly give that right to all external users, which would
make it possible for anyone to modify the functioning of the system. If the goal
is to assign those roles to external users, then it’s their pubkeys that should be
stored, not their adresses.

5.4 Internal function names

See

The functions performOperation and updatePrice in the MarketAggregator
contract (file: "MarketsAggregator.sol”). are internal so their names should
start with ‘_‘.

CHAPTER 5. CODE AUDIT 26

5.5. UNDEFINED FUNCTIONS CHAPTER 5. CODE AUDIT

5.5 Undefined functions

The functions calculateUtilizationRate, calculateBorrowingRate and
calculateExchangeRate in the ‘MarketMath* library (file: "MarketMath.sol”)
are undefined and unused. Defining and using them appropriately would sig-
nificantly improve the readability of the source code.

5.6 Unused functions

The functions:

e calculateExchangeRate in the MarketMath library (file: ”Market-
Math.sol”)

e calculateU, calculateTotalReserves, calculateNewIndex, calcu-
lateTotalBorrowed and calculateReserves in the MarketOperations
library (file: "MarketOperations.sol”)

e _calculateBorrowInfo in the MarketAggregator conract (file: "Mar-
ketsAggregator.sol”)

And all the functions from the MarketToUserPayloads library (file: "Market-
Payloads.sol”) and TvmCellOperations library (file: "TvmCellOperations.sol”)
are unused. Unused functions should be removed from the code as they are
useless and they clutter the code.

5.7 Unused modifiers
| Minor issue: Unused modifies]

The modifiers:

e onlySelf, onlyRealTokenRoot and onlyExecutor in the MarketAggre—
gator contract (file: "MarketsAggregator.sol”)

e onlyMarket in the WalletController conract (file: "WalletCon-
troller.sol”)

Are unused. Unused modifiers should be removed from the code as they are
useless and they clutter the code.

5.8 Library MarketMath

In file MarketMath.sol

5.8.1 Function calculateExchangeRate

CHAPTER 5. CODE AUDIT

27

5.9. LIBRARY UTILITIES CHAPTER 5. CODE AUDIT

14 function calculateExchangeRate(uint256 currentPool, uint256 totalBorrowed,
uint256 totalReserves, uint256 totalSupply)

15 internal pure returns (uint256)

16 {

17 return math.div(currentPool - totalReserves + totalBorrowed, totalSupply);

18 }

math.div does not exist. It should use the infix division operator /.

5.9 Library Utilities

In file IModule.sol

5.9.1 Function calculateSupplyBorrow

90 function calculateSupplyBorrow(

91 mapping (uint32 => uint256) supplyInfo,

92 mapping (uint32 => BorrowInfo) borrowlInfo,

93 mapping (uint32 => MarketInfo) marketInfo,

94 mapping (address => fraction) tokenPrices

95) intermnal returns (fraction) {

96 fraction accountHealth = fraction(0, 0);

97 fraction tmp;

98 fraction nom = fraction(0, 1);

99 fraction denom = fraction(0, 1);

100

101 // Supply:

102 // 1. Calculate real token amount: vToken*exchangeRate

103 // 2. Calculate real token amount in USD: realTokens/tokenPrice

104 // 3. Multiply by collateral factor: usdValue*collateralFactor

105 for ((uint32 marketId, uint256 supplied): supplyInfo) {

106 tmp = supplied.numFMul (marketInfo[marketId].exchangeRate);

107 tmp = tmp.fDiv(tokenPrices[marketInfo[marketId].tokenl);

108 tmp = tmp.fMul (marketInfo[marketId].collateralFactor);

109 nom = nom.fAdd (tmp);

110 nom = nom.simplify();

111 }

112

113 // Borrow:

114 // 1. Recalculate borrow amount according to new index

115 // 2. Calculate borrow value in USD

116 // NOTE: no conversion from vToken to real tokens required, as value is
stored in real tokens

117 for ((uint32 marketId, BorrowInfo _bi): borrowInfo) {

118 if (_bi.tokensBorrowed != 0) {

119 if (!_bi.index.eq(marketInfo[marketId].index)) {

120 tmp = borrowInfo[marketId].tokensBorrowed.numFMul (marketInfol[

marketId].index);

121 tmp = tmp.fDiv(borrowInfo[marketId]. index);

122 } else {

123 tmp = borrowInfo[marketId].tokensBorrowed.toF();

124 }

125 tmp = tmp.fDiv(tokenPrices[marketInfo[marketId].token]);

126 tmp = tmp.simplify();

127 denom = denom.fAdd(tmp) ;

128 denom = denom.simplify();

129 }

130 }

CHAPTER 5. CODE AUDIT 28

131
132
133
134
135

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

5.10. CONTRACT BORROWMODULE CHAPTER 5. CODE AUDIT

accountHealth = nom.fDiv(denom);

return accountHealth;

The function is called “calculateSupplyBorrow” but it calculates a user’s ac-
count health. It should be named accordingly, e.g. “calculateAccountHealth”.

5.10 Contract BorrowModule

In file BorrowModule.sol

5.10.1 Function borrowTokensFromMarket

function borrowTokensFromMarket (
address tonWallet,
address userTip3Wallet,
uint256 tokensToBorrow,
uint32 marketId,
mapping (uint32 => uint256) supplyInfo,
mapping (uint32 => BorrowInfo) borrowInfo
) extermnal override onlyUserAccountManager {
tvm.rawReserve (msg.value, 2);
mapping (uint32 => MarketDelta) marketsDelta;
MarketDelta marketDelta;

// Borrow:
// 1. Check that market has enough tokens for lending

// 2. Calculate user account health

// 3. Calculate USD value of tokens to borrow

// 4. Check if there is enough (collateral - borrowed) for new token
borrow

// 5. Increase user’s borrowed amount

MarketInfo mi = marketInfo[marketId];

if (tokensToBorrow < mi.realTokenBalance - mi.totalReserve) {
fraction accountHealth = Utilities.calculateSupplyBorrow(supplyInfo,

borrowInfo, marketInfo, tokenPrices);
if (accountHealth.nom > accountHealth.denom) {

uint256 healthDelta = accountHealth.nom - accountHealth.denom;

fraction tmp = healthDelta.numFMul (tokenPrices [marketInfo[marketId

].token]);
uint256 possibleTokenWithdraw = tmp.toNum();
if (possibleTokenWithdraw >= tokensToBorrow) {

marketDelta.totalBorrowed.delta = tokensToBorrow;

marketDelta.totalBorrowed.positive = true;

marketDelta.realTokenBalance.delta = tokensToBorrow;
marketDelta.realTokenBalance.positive = false;

marketsDelta[marketId] = marketDelta;

TvmBuilder tb;

tb.store (marketId) ;
tb.store(tonWallet) ;
tb.store(userTip3Wallet) ;

CHAPTER 5. CODE AUDIT

29

113
114
115

116
117
118
119
120
121
122
123

124
125
126
127
128

129
130
131
132
133

10
11
12
13

15
16

18
19
20
21
22
23

5.11. MODULE "IUSERACCOUNT.SOL” CHAPTER 5. CODE AUDIT

tb.store(tokensToBorrow) ;

emit TokenBorrow(marketId, marketDelta, tonWallet,
tokensToBorrow) ;

IContractStateCacheRoot (marketAddress) .receiveCacheDelta{

flag: MsgFlag.REMAINING_GAS
}(marketsDelta, tb.toCell());
} else {

IUAMUserAccount (userAccountManager) .writeBorrowInformation{

flag: MsgFlag.REMAINING_GAS

}(tonWallet, userTip3Wallet, O, marketId, marketInfo[marketId

].index);
}
} else {

IUAMUserAccount (userAccountManager) .writeBorrowInformation{

flag: MsgFlag.REMAINING_GAS

}(tonWallet, userTip3Wallet, O, marketId, marketInfo[marketId].

index) ;
}
} else {

address (tonWallet).transfer ({value: 0, flag: MsgFlag.REMAINING_GAS});

}

Line 99. To caculate the amount of tokens that it is possible to withdraw, the
health delta needs to be divided by the price of the token not multiplied by it.

5.11 Module "TUserAccount.sol”

5.11.1 Struct UserMarketInfo

struct UserMarketInfo {
bool exists;
uint32 _marketId;
uint256 suppliedTokens;
fraction accountHealth;
BorrowInfo borrowInfo;

}

The field accountHealth is unused.

5.12 Contract Platform

In file Platform.sol.

5.12.1 Function initializeContract

function initializeContract(TvmCell contractCode, TvmCell params) private {

tvm.accept () ;
TvmBuilder builder;

builder.store(root);
builder.store(platformType) ;

CHAPTER 5. CODE AUDIT

30

24
25
26
27
28
29
30
31
32
33

S UL W

53
54
55

5.13. MODULE CHAPTER 5. CODE AUDIT

"FLOATINGPOINTOPERATIONS.SOL”

builder.store(platformCode); // ref 1
builder.store(initialData); // ref 2
builder.store(params) ; // ref 3

tvm.setcode (contractCode) ;
tvm.setCurrentCode (contractCode) ;

onCodeUpgrade (builder.toCell ());
}

Major issue: tvm.accept in a private function
Private and internal functions should not have a tvm.accept, as they might
be called by an external function that is not supposed to do a tvm.accept.

5.13 Module "FloatingPointOperations.sol”

5.13.1 Struct fraction

struct fraction {
uint256 nom;
uint256 denom;

}

The name of the field nom should be num for “numerator”.

5.14 Library FPO

In file FloatingPointOperations.sol

5.14.1 Function eq

function eq(fraction a, fraction b) internal pure returns(bool) {
return ((a.nom == b.nom) && (a.denom == b.denom));

}

Major issue: Math error in FP0.eq
Comparing numerators and denominators when testing if fractions are equal
is incorrect. eq(%,%%2) will return false while it should return true. The

fractions need to be normalized before checking if they are equal.

5.14.2 Function simplify

function simplify(fraction a) internal pure returns(fraction) {
// loosing 7?77?77 ¥ of presicion at most
if (a.nom / a.denom > 100e9) {
return fraction(a.nom / a.denom, 1);
} else {
// using bitshift for simultaneos division
// leaving up to 64 bits of information if nom & denom > 2764
if ((a.nom >= bits224) && (a.denom >= bits224)) {
return fraction(a.nom / bits160, a.denom / bits160);

}

CHAPTER 5. CODE AUDIT

31

5.14. LIBRARY FPO CHAPTER 5. CODE AUDIT

if ((a.nom >= bits192) && (a.denom >= bits192)) {
return fraction(a.nom / bits128, a.denom / bits128);

}

if ((a.nom >= bits160) && (a.denom >= bits160)) {
return fraction(a.nom / bits96, a.denom / bits96);

}

if ((a.nom >= bits128) && (a.denom >= bits128)) {
return fraction(a.nom / bits64, a.denom / bits64);

}
if ((a.nom >= bits96) && (a.denom >= Dbits96)) {
return fraction(a.nom / bits32, a.denom / bits32);

}

return a;

Major issue: Math issue in FPO.simplify
Dividing the numerator and denominator by their greatest common divisor
might make it unnecessary to do the bitshift and avoid losing precision.

CHAPTER 5. CODE AUDIT

32

	Introduction
	High-level system description
	System purpose
	Terms of the system domain
	Mathematical notations
	System functioning
	Groups of users
	User capabilities
	Supply
	Withdraw
	Borrow
	Repay
	Liquidate

	Key system algorithms
	Interest acquisition
	Interest rate indexes
	Reserves
	vToken exchange rate calculation
	Account health and borrow capacity calculation
	Liquidation
	Module locking mecanism

	Architecture of the System
	Main smart contracts
	MarketsAggregator
	Operations modules
	Oracle
	TonTokenWallet
	RootTokenContract
	TIP3TokenDeployer
	WalletController
	UserAccount
	UserAccountManager

	User interactions

	Usage scenarios
	Updating a user's account health
	Supply
	Withdraw
	Borrow
	Repay
	Liquidate

	Risks
	Financial risks
	Insolvency
	Illiquidity
	Unfair liquidation
	Centralization

	Smart contract risks
	Unsound math
	Non liquidation
	Locking
	Visibility

	System Properties
	Assumptions
	User related properties
	Market properties

	Code audit
	General remarks
	Typography of Internal Functions
	Constructors without checks

	Contract deployment from Platform
	Possible attack

	Unsafe role assignement
	Internal function names
	Undefined functions
	Unused functions
	Unused modifiers
	Library MarketMath
	Function calculateExchangeRate

	Library Utilities
	Function calculateSupplyBorrow

	Contract BorrowModule
	Function borrowTokensFromMarket

	Module "IUserAccount.sol"
	Struct UserMarketInfo

	Contract Platform
	Function initializeContract

	Module "FloatingPointOperations.sol"
	Struct fraction

	Library FPO
	Function eq
	Function simplify

