
RESEARCH

Received: 2 December 2024 / Accepted: 4 July 2025 / Published online: 21 August 2025
© The Author(s) 2025

	
 Hichem Rami Ait-El-Hara
hichem.ait-el-hara@ocamlpro.com

François Bobot
francois.bobot@cea.fr

Guillaume Bury
guillaume.bury@ocamlpro.com

1	 OCamlPro, 75014 Paris, France
2	 Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France

Reasoning over n-indexed sequences in SMT

Hichem Rami Ait-El-Hara1,2 · François Bobot2 · Guillaume Bury1

Acta Informatica (2025) 62:33
https://doi.org/10.1007/s00236-025-00496-w

Abstract
The SMT (Satisfiability Modulo Theories) theory of arrays is well-established and widely
used, with various decision procedures and extensions developed for it. However, recent
contributions suggest that developing tailored reasoning for some theories, such as se-
quences and strings, can be more efficient than reasoning over them through axiomatiza-
tion over the theory of arrays. In this paper, we are interested in reasoning over n-indexed
sequences as they are found in some programming languages, such as Ada. We propose
an SMT theory of n-indexed sequences and explore different ways to represent and reason
over n-indexed sequences using existing theories, as well as tailored calculi for this theory.

1  Introduction

In the SMT theory of sequences, sequences are viewed as a generalization of strings to
non-character elements, with possibly infinite alphabets. These sequences are dynamically
sized, and their theory has a rich signature, enabling operations such as selecting elements
of a sequence by their index, concatenating sequences, extracting sub-sequences, and more.
This expressiveness makes the theory of sequences well-suited for representing many com-
mon data structures in programming languages, such as arrays in the C language, lists in
Python, etc.

In contrast, the theory of arrays is less expressive. It only supports selecting and updat-
ing a single value at a single index, and arrays have fixed sizes determined by the cardinal-

1 3

https://doi.org/10.1007/s00236-025-00496-w
http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-025-00496-w&domain=pdf&date_stamp=2025-8-20

H. R. Ait-El-Hara et al.

ity of the sort of indices. While sequences have dynamic lengths and allow operations on
sub-sequences. To represent sequences using the theory of arrays, it is necessary to extend
the theory and axiomatize the necessary properties, such as dynamic length and additional
operations like concatenation and sub-sequence extraction.

We are interested in a variant of the theory of sequences, which we call the theory of n
-indexed sequences. These n-indexed sequences are defined as ordered collections of values
of the same sort indexed from a first index n to a last index m. Such sequences are present
in some programming languages such as Ada. Since there is no dedicated theory for such
sequences, reasoning over them cannot be achieved straightforwardly using the existing
theories of arrays and sequences. It is therefore necessary to use extensions and axiomatiza-
tions to reason over them.

In this paper, we will present the theory of n-indexed sequences, its signature and seman-
tics, as well as different approaches to reason over it. These include leveraging existing
theories and adapting calculi designed for the theory of sequences to the theory of n-indexed
sequences.

1.1  Related work

The SMT theory of sequences was introduced by Bjørner et al. [6]. Several works have
since explored its syntax and semantics [2, 6] and its decidability [10, 12]. Our contribution
builds upon a previously published extended abstract [1], in which we introduced the theory
of n-indexed sequences and presented various reasoning approaches.

Our work draws on the contribution by Sheng et al. [17], which describes the calculi for
the theory of sequences implemented in the cvc5 SMT solver [3]. The Z3 SMT solver [16]
also supports the theory of sequences, although we are unaware of any published contribu-
tions detailing its reasoning techniques. The calculi for the theory of sequences described in
[17] are based on calculi developed for the theories of strings [5, 14] and arrays [9], which
have been generalized and adapted for sequence reasoning.

Other contributions took a different approach, relying more on the theory of arrays and
extending it with properties present and desired in sequences, such as length constraints [7,
8, 11] and operations like concatenation [19].

2  Notation

In the rest of the paper, we refer to the theory of arrays as the Array theory, the theory of
sequences as the Seq theory, the theory of n-indexed sequences as the NSeq theory and the
theory of Algebraic Data Types as the ADT theory. We also use the following notation: =
for equality, ≡ for logical equivalence, and =⇒ for implication. If a formula a = b is true
in the context of the solver, we say that a and b are (semantically) equivalent.

We represent the sort of integers with Int, the sort of n-indexed sequences with NSeq E,
where E is the sort of the elements stored in the n-indexed sequences. We refer to n-indexed
sequences as n-sequences.

We use s and sn, kn, wn, yn, and zn (where n is an integer) to represent n-sequence
terms. The symbols i and j represent general index terms, f and l represent index terms that
denote bounds of n-sequences, and v and u represent n-sequence element terms.

1 3

33  Page 2 of 25

Reasoning over n-indexed sequences in SMT

We present the calculi we developed as a set of inference rules that handle the symbols of
the NSeq theory. In the inference rules, the statements above the line are the premises, and
the statements below it are the conclusions. The|| symbol separates the different cases of the
conclusions. Terms that do not appear in the premise of an inference rule but do appear in
the conclusion are to be considered fresh variables.

3  The theory of n-indexed sequences

We present in this section the theory of n-indexed sequences. The signature of the NSeq
theory is presented in Table 1, along with the notation of the symbols of the theory that we
use in the remainder of the paper.

Definition 1  (Bounds) The bounds of an n-sequence s are its first and last indices, which are
respectively denoted as f s and l s, and correspond to the values returned by the functions
nseq.first(s) and nseq.last(s), respectively. An index i is said to be within the bounds of an
n-sequence s if:

	 f s ≤ i ≤ l s

Definition 2  An n-sequence s is said to be empty if l s < f s. Two empty n-sequences s1
and s2 are equal if f s1 = f s2 and l s1 = l s2 . Otherwise, they are distinct.

The following list describes the semantics of each symbol in the theory:

	● f s: the first index of s.
	● l s: the last index of s.
	● get (s1, i): If f s1 ≤ i ≤ l s1 , returns the element associated with i in s; otherwise, re-

turns an uninterpreted value. An uninterpreted value is one that is not constrained and
can be any value of the right sort.

	● set (s1, i, v): If f s1 ≤ i ≤ l s1 , creates a new n-sequence s2 that has the same bounds
as s1, where ∀k. f s1 ≤ k ≤ l s1 =⇒ get (s2, k) = ite (k = i, v, get (s1, k)). Other-
wise, returns s1.

	● const (f, l, v): Creates an n-sequence s with f s = f ∧ l s = l, where
∀k. f ≤ k ≤ l =⇒ get (s, k) = v.

Table 1  The signature of the theory of n-indexed sequences
SMT-LIB symbol Sort Notation
nseq.first NSeq E → Int f _

nseq.last NSeq E → Int l _
nseq.get NSeq E → Int → E get (_, _)
nseq.set NSeq E → Int → E → NSeq E set (_, _, _)
nseq.const Int → Int → E → NSeq E const (_, _, _)
nseq.relocate NSeq E → Int → NSeq E relocate (_, _)
nseq.concat NSeq E → NSeq E → NSeq E concat (_, _)
nseq.slice NSeq E → Int → Int → NSeq E slice (_, _, _)
nseq.update NSeq E → NSeq E → NSeq E update (_, _)

1 3

Page 3 of 25  33

H. R. Ait-El-Hara et al.

	● relocate (s1, f): Given an n-sequence s1 and an index f, returns a
new n-sequence s2 with f s2 = f ∧ l s2 = f + l s1 − f s1 , where
∀k. f ≤ k ≤ f + l s1 − f s1 =⇒ get (s2, k) = get (s1, k − f s2 + f s1).

	● concat (s1, s2): If s1 is empty, returns s2. If s2 is empty, returns
s1. If f s2 = l s1 + 1, returns a new n-sequence s3 with f s3 = f s1 ∧ l s3 = l s2 , where
∀k. f s1 ≤ k ≤ l s2 =⇒ get (s3, k) = ite (k ≤ l s1 , get (s1, k), get (s2, k)). Other-
wise, returns s1.

	● slice (s1, f, l): If f s1 ≤ f ≤ l ≤ l s1 , returns a new n-sequence s2 with
f s2 = f ∧ l s2 = l, where ∀k. f ≤ k ≤ l =⇒ get (s2, k) = get (s1, k). Otherwise,
returns s.

	● update (s1, s2): If s1 is empty, s2 is empty, or the property f s1 ≤ f s2 ≤ l s2 ≤ l s1 does
not hold, returns s1. Otherwise, returns a new n-sequence s3 that has the same bounds
as s1, where ∀k. f s1 ≤ k ≤ l s1 =⇒ get (s3, k) = ite (f s2 ≤ k ≤ l s2 , get s2, k,
get s1, k).

Definition 3  (Extensionality) The theory of n-indexed sequences is extensional, which
means that n-sequences that have the same bounds and contain the same elements are equal.
Therefore, given two n-sequences s1 and s2:

	
s1 = s2 ≡

f s1 = f s2 ∧ l s1 = l s2 ∧ (∀i. f s1 ≤ i ≤ l s1 → get (s1, i) = get (s2, i))

Different semantics can be chosen for the functions of this theory, particularly the slice
and update functions. In [2], we defined a set of theory design criteria. In particular, we
showed that previously proposed semantics for the update function in the Seq theory were
not symmetric (an overlapping update on the right was different from one on the left),
which does not align with the design criterion of avoiding surprising the users. Instead, we
proposed a symmetric semantic: in all cases of overlapping update , the shared indices are
updated. It is possible to adopt the same semantics for the update operator in the NSeq
theory. However, we chose a different, yet still symmetrical, semantic by not updating the
n-sequence whenever the update overlaps its bounds. This choice is justified by our main
use case, which is representing arrays from the Ada programming language. That is also the
reason for the choice of the semantics of the concat and slice functions.

4  Reasoning with existing theories

One way to reason over the NSeq theory is by using the theory of arrays. It is done by
extending it with the symbols of the NSeq theory and adding the right axioms that capture
the semantics of the corresponding symbols in the NSeq theory. However, this approach has
considerable limitations, as operations on slices of n-sequences are handled using axioms
that quantify over all the elements of those slices, and the handling of these quantifiers tends
to be costly for solvers.

Alternatively, it is possible to use the Seq and ADT theories to encode n-sequences. This
can be done by defining n-sequences as a pair of a sequence and the first index (the offset
to zero):

1 3

33  Page 4 of 25

Reasoning over n-indexed sequences in SMT

The other symbols of the NSeq theory can also be defined using the NSeq data type
defined above, for example:

Except for the const function which needs to be axiomatized:

The full NSeq theory, defined using the Seq and ADT theories, is included in Appendix
A.

Although this approach allows us to reason over n-indexed sequences, it is not ideal to
depend on two theories to do so, as it implies that the performance of reasoning about the
theory is tied to the performance of reasoning over the other two theories. Additionally, the
differences in semantics between the update and slice functions of the NSeq theory and
the seq.update and seq.extract functions of the Seq theory make the definitions relatively
complex and costly to handle by solvers.

Another difference is in empty n-sequences. With this encoding, empty n-sequences that
have the same first index will always have the same last index (one subtracted from the first
index). On the other hand, in the original theory, an empty n-sequence can have any last
index that is lesser than the first index. The encoding could be made faithful to the original
theory by adding a specific constructor in the ADT for empty n-sequences. However, this
would eventually hinder the performance of the solvers that use the encoding, especially
since the difference in semantics is not problematic. Empty n-sequences typically represent
corner cases or cases of failure, and the position of their last index tends to be irrelevant for
determining satisfiability.

1 3

Page 5 of 25  33

H. R. Ait-El-Hara et al.

5  Porting calculi from the Seq theory to the NSeq theory

To develop our calculi over the NSeq theory, we based our work on the calculi developed
by Sheng et al. [17] for the Seq theory, where two calculi were proposed. The first is called
the BASE calculus, which is based on a string theory calculus that reduces the functions of
the theory to concatenations of sequences. The second is called the EXT calculus, which
handles the functions of the theory that select and store an element at an index using array-
like reasoning. Our versions of these calculi are referred to as NS-BASE and NS-EXT,
respectively.

The NSeq theory differs from the Seq theory in both the syntax and semantics of many
symbols:

	● const and relocate do not appear in the Seq theory, while seq.empty, seq.unit, and seq.
len do not appear in the NSeq theory.

	● The seq.nth function corresponds to the get function in the NSeq theory.
	● seq.update from the Seq theory, with a value as the third argument, corresponds to set

in the NSeq theory, while seq.update with a sequence as the third argument corresponds
to update in the NSeq theory, which takes only two n-sequences as arguments.

	● seq.extract in the Seq theory takes a sequence, an offset, and a length, and corresponds
to slice in the NSeq theory, which takes an n-sequence, a first index, and a last index.

	● The concatenation function (seq.++) in the Seq theory is n-ary, and it corresponds to
concat in the NSeq theory, which is binary.

Therefore, we needed to make substantial changes to the Seq theory calculi to adapt them
to the NSeq theory. In this section, we present the resulting calculi. We assume that we are
in a theory combination framework where reasoning with the theories of integer arithmetic
and booleans is supported, and where unsatisfiability in one of the theories implies unsatisfi-
ability of the entire reasoning.

5.1  Common calculus

Definition 4  (Equivalence modulo relocation) Given two n-sequences s1 and s2, the terms
are said to be equivalent modulo relocation, denoted by the relation s1 =reloc s2, which is
defined as:

	
s1 =reloc s2 ≡

l s2 = l s1 − f s1 + f s2 ∧ ∀i : Int, f s1 ≤ i ≤ l s1 ⇒ get (s1, i) = get (s2, i − f s1 + f s2)

Two n-sequences are equivalent modulo relocation if they are equal or start at different
indices but contain the same sequence of elements.

Proposition 1  The equivalence modulo relocation relation is an equivalence relation
between n-sequences.

Proof  The proof of Proposition 1 is in Appendix B. � □

1 3

33  Page 6 of 25

Reasoning over n-indexed sequences in SMT

Definition 5  (n-sequence normal form) For simplicity and consistency with the Seq theory cal-
culi, we introduce an internal concatenation operator ::, for which the following invariant holds:

	 s = s1::s2 =⇒ f s = f s1 ∧ l s = l s2 ∧ f s2 = l s1 + 1

This operator is used to normalize n-sequences. It differs from concat in that it does not
require checking the condition f s2 = l s1 + 1 before concatenation, as this condition is
ensured by the invariant.

Assumption 1  We assume that the following simplification rewrites are applied whenever
possible:

	

s1::s2 → s1 when l s2 < f s2 (1)
s1::s2 → s2 when l s1 < f s1 (2)
s1::s2 → s1::w1:: . . . ::wn when s2 = w1:: . . . ::wn (3)
s1::s2 → w1:: . . . ::wn::s2 when s1 = w1:: . . . ::wn (4)

(1) and (2) remove empty n-sequences from the normal form. (3) and (4) ensure that when
an n-sequence appears in the normal form of another one and has its own normal form, then
it is replaced by its normal form.
Figure 1 illustrates a set of common rules shared between the two calculi NS-BASE and
NS-EXT. The rules Const-Bounds and Reloc-Bounds propagate the bounds of constant and
relocated n-sequences, which are created using the const and relocate functions, respec-
tively. The rules NS-Slice, NS-Concat, and NS-Update handle slice , concat , and update
by normalizing the n-sequences under appropriate conditions.

If an n-sequence has two normal forms where distinct terms begin at the same index but
end at different indices, the NS-Split rule rewrites the longer term as a concatenation of the
shorter one and a fresh variable. The NS-Comp-Reloc rule propagates concatenations over
the =reloc rule, while Reloc-Inv ensures that two n-sequences that are equivalent modulo
relocation are equal if they start at the same index. The NS-Exten rule is the extensionality
rule, which states that any two n-sequences s1 and s2 are either equal or distinct. They can
be distinct either for having different bounds, for containing distinct components that have
the same bounds, or differing in at least one element.

5.2  The base calculus

The base calculus comprises the rules in Figures 1 and 2. The rules R-Get and R-Set handle
the get and set operations by introducing new normal forms for the n-sequences they
operate on. In the R-Get rule, when i is within the bounds of s, a new normal form of s is
introduced. This form includes a constant n-sequence of size one at the ith position storing
the value v, and two variables, k1 and k2, to represent the left and right segments of the n
-sequence s, respectively.

The R-Set rule operates similarly: when i is within the bounds of s2, new normal forms
are introduced for both s1 and s2. These forms share two variables, k1 and k3, which rep-
resent the segments to the left and right of the ith index. For s1, the normal form contains a
constant n-sequence of size one holding the value v at the ith index, while s2’s normal form
contains an n-sequence variable, k2, also of size one at the ith index.

1 3

Page 7 of 25  33

H. R. Ait-El-Hara et al.

Fig. 2  NS-BASE specific infer-
ence rules

Fig. 1  Common inference rules for the NS-BASE and NS-EXT calculi

1 3

33  Page 8 of 25

Reasoning over n-indexed sequences in SMT

5.3  The extended calculus

The extended calculus consists of the rules in Figures 1 and 3. It differs from the base calculus
by handling the get and set functions similarly to their treatment in the array decision pro-
cedure described in [9]. The Get-Intro rule introduces a get operation from a set operation.
The Get-Set rule, commonly referred to as the read-over-write or select-over-store rule in the
Array theory, ensures that a get operation applied over a set operation returns the right value.

The Set-Bound rule ensures that a set operation is either performed within the bounds
of the target n-sequence or produces an n-sequence equivalent to the original one on which
set was applied. The Get-Concat, Set-Concat, and Set-Concat-Inv rules illustrate how the

Fig. 3  NS-EXT specific inference rules

1 3

Page 9 of 25  33

H. R. Ait-El-Hara et al.

get and set operations are handled when applied to an n-sequence in normal form, where
the operations affect the right component of the normal form. The Get-Const rule addresses
the special case where a get operation is applied to a constant n-sequence. Lastly, the Get-
Reloc rule enables the propagation of constraints on elements of an n-sequence to others
that are equivalent modulo relocation to it.

6  Cacluli soundness proofs

We place ourselves in a CP (Constraint Programming) context in which each term is associated
to a set of domains that are refined throughout the reasoning. The reasoning is done by applying
inference rules until saturation, doing constraint propagation as well as decisions. A problem is
unsatisfiable if exhaustive exploration of the resolution space leads to no solution, meaning that
all orders of decisions and propagations lead to contradictions. Contradictions occur when a term
ends up with domains which cannot satisfy the constraints of the problem. A problem is satisfi-
able if there exist a resolution path in which the domains of the terms allow for the computing
of a model that satisfies the constraints of the problem, and it is only when a model is explicitly
computed and checked to be satisfiable that a problem can be answered as satisfiable.

In this section, we prove the soundness of the inference rules that constitute the NS-
BASE and NS-EXT calculi. We say that a rule is sound if by applying it when its premises
are respected, it produces an equisatisfiable environment to the one before its applica-
tion. That is verified by proving that the consequences of the inference rules can in fact be
deducted from their premises.

6.1  Common calculus soundness

In this section we prove the soundness of the rules in Figure 1.

Proof  Const-Bounds is sound

Given s = const (f, l, v), the rule just sets the bounds for the n-sequence s to f and l,
following the semantics of the const function. � □

Proof  Reloc-Bounds is sound

Given s1 = relocate (s2, i), the rule states:

	● if i = f s2 then s1 = s2, which is sound by Definition 4 to defined the bounds and Defi-
nition 3 to prove equality.

	● otherwise it sets the bounds of s1 and adds the relation s1 =reloc s2, which is sound by
Definition 4.� □

Proof  Reloc-Inv is sound

Given s1 =reloc s2, the rule propagates that s1 = s2 if they have the same first index,
and that s1 ̸= s2 otherwise, which are sound by Definitions 4 and 3. � □

1 3

33  Page 10 of 25

Reasoning over n-indexed sequences in SMT

Proof  NS-Slice is sound

Given s1 = slice (s, f, l) the rule states that if f < f s or l < f or l s < l, then
s1 = s, otherwise the rule introduces two n-sequences fresh variables k1 and k2 such that
s = k1::s1::k2 which amounts to stating that s1 is equal to the section of the n-sequence s
that is within the bounds f and l which are the bounds of s1, which follows the semantics of
the slice function. � □

Proof  NS-Concat is sound

Given s = concat (s1, s2) the rule states that if s1 is empty then s = s2, if s2 is empty
or f s2 ̸= l s1 + 1 then s = s1, otherwise s = s1::s2 which corresponds to the semantics of
the concat function. � □

Proof  NS-Update is sound

Given s1 = update (s2, s) the rule states that if l s < f s or f s < f s2 or l s2 < l s, then
s1 = s2, otherwise it introduces three n-sequences fresh variables k1, k2 and k3 such that
s1 = k1::s::k3 and s2 = k1::k2::k3, stating that s1 shares the same elements with s2 on all
indices outside the bounds s, wherein s1 has the same elements as s, while s2 elements within
the bounds of s are those of k, which corresponds to the semantics of the update function. � □

Proof  NS-Comp-Reloc is sound

Given s1 = k1::k2:: . . . ::kn and s1 =reloc s2, the rule states that if
f s1 = f s2 then s1 = s2, otherwise it states that: s2 = relocate(k1, f s2)::
relocate(k2, f k2 − f s1 + f s2):: . . . ::relocate(kn, f kn − f s1 + f s2), which corresponds
to computing a normal form for s2 by relocation that of s1, which is sound by Definitions 4
and 5. � □

Proof  NS-Exten is sound.

Given two n-sequences s1 and s2, the rule states that they are either equal or unequal,
with uneqaulity being presented in three cases, the first case is when the two n-sequences
have distinct bounds, the second case is when the normal forms of the two n-sequences
contain two distinct components which have the same bounds, and the third case is when
there exists an index within the bounds of the two n-sequences in which they hold distinct
elements, which is sound by Definition 3. � □

6.2  NS-BASE soundness

In this section we prove the soundness of the rules in Figure 2.

Proof  R-Get is sound

1 3

Page 11 of 25  33

H. R. Ait-El-Hara et al.

Given v = get (s, i), the rule does nothing if i is outside the bounds of s, otherwise it
states that s = k1:: const (i, i, v)::k2 with k1 and k2 as fresh n-sequence variables, which
amounts to stating that the element at the ith index in s is equal to v, and which corresponds
to the semantics of the get function. � □

Proof  R-Set is sound

Given s1 = set (s2, i, v), the rule states:

	● If i is within the bounds of s2, then the fresh n-sequence variables k1, k2 and k3 are intro-
duced and s1 = k1::const(i, i, v)::k3 ∧ s2 = k1::k2::k3 is propagated. It states that at the
ith index, s1 contains const (i, i, v), while s2 contains k2. And on the other indices, s1 and
s2 share the same elements, corresponding to the elements contained in the n-sequence vari-
ables k1 and k3. That is sound by the semantics of the set function and Definition 5.

	● If i is outside the bounds of s2, then s1 = s2, which is sound by the semantics of the set
function.� □

6.3  NS-EXT soundness

In this section we prove the soundness of the rules in Figure 3.

Proof  Get-Concat is sound

Given v = get (s, i) and s = w1:: . . . ::wn, the rule does nothing if i is outside the bounds
of s, otherwise it states that get (wm, i) = v such that 1 ≤ m ≤ n, wm is one of the com-
ponents w1:: . . . ::wn and f wm ≤ i ≤ l wm . It amounts to stating that the ith element of s is
equal to the ith element of the component of s’s n-sequence normal form that encompasses
the i index, which is sound by the semantics of the get function Definition 5. � □

Proof  Set-Concat is sound

Given s1 = set (s2, i, v) and s2 = w1:: . . . ::wn, the rule does nothing if i is outside the
bounds of s2, otherwise it sets the n-sequence normal form of s1 to the same as s2 except on the
component wm, such that wm is within w1:: . . . ::wn and f wm ≤ i ≤ l wm , which is replaced
by set (wm, i, v), which amounts to applying the set function to the component of s2’s normal
that encompasses the index i, which is sound by the definition of set and Definition 5. � □

Proof  Set-Concat is sound

Given s1 = set (s2, i, v) and s1 = w1:: . . . ::wn, the rule does nothing if i is outside the
bounds of s2, otherwise it sets the n-sequence normal form of s2 to the same as s1 except
on the component wm, such that wm is within w1:: . . . ::wn and f wm ≤ i ≤ l wm , which is
replaced by a fresh n-sequence variable k, such that wm = set (k, i, v), which amounts to
saying that s2 has the same normal form components as s1 except on the component with
encompasses the index i, which is sound by the definition of set and Definition 5. � □

1 3

33  Page 12 of 25

Reasoning over n-indexed sequences in SMT

Proof  Get-Const is sound

Given s = const (f, l, v) and u = get (s, i), if i is within the bounds of s, then u = v
since s is a constant n-sequence, otherwise the rule does nothing, which is sound by the
semantics of the get and const functions. � □

Proof  Set-Bound is sound

Given s1 = set (s2, i, v), the rule states that:

	● Either s1 = s2, due to i being outside the bounds of s2 or because v = get (s2, i), which
is sound by the semantics of the set and get functions

	● Or i is within the bounds of s2, s1 and s2 have equal bounds and v ̸= get (s2, i), which
is sound by the semantics of the set and get functions� □

Proof  Get-Set is sound

Given s1 = set (s2, i, v) and u = get (s1, j), if i is not within the bounds of s1 then the
rule does nothing, otherwise:

	● If i is within the bounds of s2 and i = j then u = v, which is sound by the semantics of
the get and set functions.

	● If i is within the bounds of s2 and i ̸= j then u = get (s2, j), which is sound by the
semantics of the get and set functions.� □

Proof  Get-Intro is sound

Given s1 = set (s2, i, v), the rule states that if i is within the bounds of s2, then
v = get (s1, i), otherwise the rule does nothing, which is sound by the semantics of the
functions get and set . � □

Proof  Get-Reloc is sound

Given v = get(s1, i) and s1 =reloc s2, the rule does nothing if i is not within the bounds
of s1, otherwise it states that v = get (s2, i − f s1 + f s2) which is sound by Definition 4.
� □

7  Implementation

To evaluate the performance of the calculi described in the previous section, we implemented
them in Colibri2. Colibri2 is a CP (Constraint Programming) solver used to reason about SMT
formulas across various theories, including linear and non-linear integer and real arithmetic,
floating-point arithmetic, fixed-size bit-vectors, and arrays. Colibri2 is a reimplementation and
extension of the COLIBRI [15] CP solver. Unlike SAT and SMT solvers, Colibri2 does not sup-
port clause learning. However, it provides greater control over the scheduling of propagations

1 3

Page 13 of 25  33

H. R. Ait-El-Hara et al.

for theory developers and simplifies theory combination. Before declaring a formula satisfiable,
Colibri2 explicitly computes a model and verifies it against the input formula, avoiding the need
for a combination framework to maintain model soundness. Nevertheless, a theory combination
framework can still be useful to make computing satisfiable models more efficient.

In Colibri2, a term from any theory can be associated with an arbitrary number of domains,
each domain holding some specific information about the term. For example, in the case of
arithmetic terms, the interval union domain is used represent all possible values the term can
take. When the equivalence classes of two terms are merged, their domains are also merged.
Any theory in Colibri2 can perform constraint propagation, which involves pruning the
domains of terms and propagating updates to other parts of the system. This ensures that other
theories using the terms affected by the constraint are informed of the updated domain and can
act on this information. Constraint propagation can take the form of assigning a value to a term
or refining one of its domains. For instance, in integer arithmetic, propagating the constraint
x ≥ 0 for an integer term x restricts its interval domain to [0, +∞).

Colibri2 also supports semantic decisions. A decision involves registering a backtracking
point and branching based on the assumption that a given proposition holds. In a given prob-
lem, the proposition is assumed to hold, and satisfiability is checked under this assumption.
If the problem is satisfiable, it is solved. Otherwise, the solver backtracks to the backtrack-
ing point and explores a new branch where an alternative assumption, typically the nega-
tion of the first one, holds. Decisions can also involve constraints on terms, encompassing
multiple complementary constraints over one or more terms.

When neither propagations nor decisions can be made, another phase, called the last effort
phase, is started. The last effort phase is another propagation phase that is used to do costlier
propagations that we don’t want to do in the first propagation phase. These include calls to the
simplex algorithm and quantifier instantiations that create new terms. The last effort phase can
also introduce new decisions, or even additional propagations for the next last effort phases.

The implementation of the scheduler uses an efficient time-wheel data structure (similar
to §6.2 in [18]), which allows for a good trade-off between prioritizing higher-priority propa-
gations and ensuring fairness. Prioritizing faster propagations is often beneficial, but such
propagations can sometimes loop and lead to slow convergence. For example, local interval
propagation starting with x, y ∈ [0, 232] with constraints x < y and y < x will remove only
one integer from the domain per propagation. Using the time-wheel data structure ensures
low-priority propagations are scheduled and executed before the slow convergence completes.

The scheduler also ensures that last effort propagations that are found to be useful, as
they lead to contradictions, are promoted to the main propagation phase after backtracking.
These propagations are then executed earlier instead of staying in the last effort phase.

In this section, we discuss our implementation choices, particularly how equivalence
modulo relocation (cf. Definition 4), is represented and used, as well as how the inference
rules that formalize the calculi are applied in practice.

7.1  Equivalence modulo relocation

As described in Section 5.1, the =reloc relation links pairs of n-sequences that contain the
same sequences of elements but have different starting indices. Proposition 1 asserts that the
=reloc relation is an equivalence relation. Therefore, we say that n-sequence terms that are

1 3

33  Page 14 of 25

Reasoning over n-indexed sequences in SMT

equivalent modulo relocation to one another, eventually transitively, are in the same =reloc
class. We present two ways to handle these classes of n-sequences.

7.1.1  Equivalence modulo relocation with undirected graphs

A straightforward way to represent such relations is to use an undirected graph in which the
vertices represent n-sequences, and an edge between two vertices indicates that the two n
-sequences are equivalent modulo relocation. The graph is undirected because the =reloc
relation is an equivalence relation (cf. Proposition 1).

Equivalence modulo relocation is used for constraint propagation, whether of n-sequence
normal forms through the NS-Comp-Reloc rule in Figure 1 or of constraints on elements
through the Get-Reloc rule in Figure 3. It is also used for equality detection through the
Reloc-Inv rule in Figure 1. To efficiently perform constraint propagation over the =reloc
relation, it is necessary to retrieve the =reloc class of any given n-sequence.

Using a graph data structure, constraint propagation can be achieved through graph
exploration algorithms, such as Breadth-First Search, to find all elements of the =reloc
class of a given n-sequence, or by using an auxiliary data structure that associates to every
n-sequenceall the elements of its =reloc class. However, these approaches are costly, the
first due to the time complexity of graph exploration, and the second due to the memory and
time required for maintaining the auxiliary data structure.

7.1.2  Equivalence modulo relocation with a labeled union-find data structure

We opted for a different approach based on the labeled union-find data structure [13]. This
structure extends the traditional union-find by labeling the edges in the trees that represent
equivalence classes. It is used to represent equivalence relations parameterized by the afore-
mentioned labels. These labels must satisfy the group axioms: they must be composable,
have a neutral element, and have an inverse.

In our case, the set of nodes N in the labeled union-find data structure corresponds to the set
of n-sequence terms, and the set of labels L corresponds to the set of integer polynomials that
represent the differences in starting indices between n-sequence terms. Integer polynomials
satisfy the group axioms: composition is integer addition (comp(x, y) = x + y), the neutral
element is 0 (∀x. x + 0 = 0 + x = x), and the inverse function is negation (inv(x) = −x).
Since the labels respect the group axioms, we ensure that all paths are compressed in our
labeled union-find data structure.

Example 1  Given the formulas F1 : s1 = relocate (s, k1), F2 : s2 = relocate (s, k2), and
F3 : s3 = relocate (s2, k3), and assuming that s is chosen as the representative:

	● F1: An edge labeled with f s − f s1 is added from s1 to s.
	● F2: An edge labeled with f s − f s2 is added from s2 to s.
	● F3: Given that the distance difference between s3 and s2 is f s2 − f s3 , and that the label

on the edge from s2 to s is f s − f s2 , then an edge labeled with f s − f s3 is added from
s3 to s.

1 3

Page 15 of 25  33

H. R. Ait-El-Hara et al.

Concretely, the implementation is as follows: each n-sequence is either a represen-
tative or a non-representative of a =reloc class. Each representative s is associated to a
map {k1 �→ s1, k2 �→ s2, . . .}, where s1, s2, . . . are non-representative n-sequences in the
=reloc class of s, and k1, k2, . . . are the labels on the edges from s1, s2, . . . to s, respec-
tively. Each non-representative si is associated with a pair (s, ki), where s is the representa-
tive of its =reloc class and ki is the label of the edge from si to s.

The representative of a =reloc class is initially chosen arbitrarily and remains unchanged
when adding new elements to the =reloc class, unless an element from another class is
added, in which case the representative of the larger class (i.e., the one with more elements)
is chosen as the representative of the merged class.

In addition to path compression, we maintain normalized edge labels. This is possible
because Colibri2 associates a normalized polynomial with each arithmetic term. This makes
equality detection straightforward. For example, given a representative s associated with a
map {k1 �→ s1, k2 �→ s2}, if a new non-representative s3 is added with the label k3 such
that k1 = k3, then we can deduce s1 = s3. Furthermore, for each representative s, we add
0 �→ s to its map of non-representatives, ensuring that if a new term s0 is added with the
label 0, we can directly deduce s0 = s.

This implementation also simplifies constraint propagation: retrieving all members of a
class is as simple as accessing the map of the class’s representative. If a constraint is propa-
gated to a representative, the map of non-representatives can be accessed directly. If it is
propagated to a non-representative, the constraint must first be applied to the representative,
then propagated from the representative to the other non-representatives.

To improve efficiency, we restrict constraint propagation to occur only from non-rep-
resentatives to representatives. This ensures that all constraints on a given n-sequence are
always propagated to the representative of its =reloc class. When two classes are merged,
and a new representative is chosen, the constraints from the other (now former) representa-
tive are also propagated to the new one. This approach effectively computes the reduced
product of the constraints for all members of a =reloc class by only propagating to the
representative, instead of redundantly propagating constraints to every member of the class.

7.2  Simplification rewrites

To ensure that Assumption 1 is maintained, we implemented a callback system. Callbacks
are functions that are executed whenever a specific event occurs. In the case of Assumption
1, the callbacks correspond to simplifications, and the events defined for a given n-sequence
s are one of the following:

	● s is empty: this event occurs when the proposition l s < f s is determined to be true.
	● s is not flat: this event occurs when s is determined to be equal to any normal form of

the shape _::_.

Whenever one of these two events occurs, the corresponding simplification is applied. When
a simplification is applied to a given n-sequence s, it is also applied to all the n-sequences
that are in its =reloc class. For instance, when an n-sequence s is determined to be empty, it
is removed from all the n-sequence normal forms in which it occurs. Similarly, all elements

1 3

33  Page 16 of 25

Reasoning over n-indexed sequences in SMT

of its =reloc class are also removed from all the n-sequence normal forms in which they
appear. This ensures that Assumption 1 is consistently upheld.

7.3  Reasoning

Most of the inference rules of the reasoning are applied as soon as possible. When a
rule is applied, it is necessary to first determine if a decision needs to be made to know
which of the inference rule’s consequences should be applied. For instance, when the term
s1 = relocate (s2, i) is encountered, if it is known that i = f s2 is true, then s1 = s2 is
propagated immediately. Otherwise, a decision is registered on whether i = f s2 is true to
determine which of the rule’s consequences should be propagated.

This applies to the rules Const-Bounds, Reloc-Bounds, NS-Slice, Reloc-Inv, NS-Concat,
NS-Update, NS-Split, and NS-Comp-Reloc in Figure 1, as well as all the rules in Figures
2 and 3.

In contrast, the NS-Exten rule is applied only during the last effort phase. This means
that it is applied to all pairs of n-sequences that are not known to be equal, but only after all
other rules, their propagations and decisions, have been executed. When the NS-Exten rule
is applied, it can introduce new propagations and decisions, which in turn may introduce
further ones, and so forth. In such cases, the NS-Exten rule is reapplied only after all newly
introduced propagations and decisions are completed. If no new propagations or decisions
are introduced, the NS-Exten rule is not reapplied.

7.4  Support for the Seq theory

To ensure compatibility with the Seq theory of cvc5 and Z3, we added support for a subset
of their versions of the Seq theory. This subset consists of the common sequence operations
that are used to represent array-like data structures in programming languages. These opera-
tions include: seq.unit, seq.len, seq.nth, seq.update, seq.extract, and seq.++.

To support these operations in our solver, we simply internally translate them into opera-
tions from the NSeq theory as follows:

	● Sequence terms: n-sequence terms where the first index is 0 and the last index is greater
than or equal to −1.

	● seq.empty: We added the nseq.empty symbol, representing a constant empty NSeq
term where the first index is 0 and the last index is −1.

	● seq.unit(v): const (0, 0, v)
	● seq.len(s): l s − f s + 1
	● seq.nth(s, i): get (s, i)
	● seq.update(s1, i, s2):

	
let (r, relocate (s2, i), ite (f s1 ≤ i ≤ l s1 ∧ l s1 < l r,

update (s1, slice (r, i, l s1)), update (s1, r)))

	● seq.extract(s, i, j):

	 ite (i < f s ∨ l s < i ∨ j ≤ 0, ϵ, slice (s, i, min(l s, i + j − 1)))

1 3

Page 17 of 25  33

H. R. Ait-El-Hara et al.

	● seq.++(s1, s2, s3, . . . , sn):

	

let (c1, concat (s1, relocate (s2, l s1 + 1)),
let (c2, concat (c1, relocate (s3, l c1 + 1)),

. . .
concat (cn−2, relocate (sn, l cn−2 + 1))))

8  Experimental evaluation

In this section, we present experimental results of our implementations described in Section
7, of the calculi described in Section 5. These experiments were conducted on quantifier-free
benchmarks that use only the Seq and NSeq theories with the theory of uninterpreted func-
tions. The benchmarks are a subset of those used by Sheng et al. [17], which were originally
translated into the Seq theory from the QF_AX SMT-LIB benchmarks [4]. We also translated
the QF_AX benchmarks into the NSeq theory to test our native calculi and compare them
with the encoding of the NSeq theory using the Seq and ADT theories described in Section 4.

Our implementations in Colibri21 of the NS-BASE and NS-EXT calculi can be used with
the following commands:

	● NS-BASE: colibri2 --nseq-base
	● NS-EXT: colibri2 --nseq-ext

For comparison, we used cvc5 (version 1.2.0) and Z3 (version 4.13.3) as reference solvers.
We tested three configurations of cvc5, each using a different strategy for handling sequence
operations:

	● cvc5: cvc5
	● cvc5-eager: cvc5 --seq-arrays=eager
	● cvc5-lazy: cvc5 --seq-arrays=lazy
	● z3: z3

Figures 4 and 5 illustrate the number of goals solved over accumulated time for Seq and NSeq
benchmarks, respectively. Detailed statistics including number of goals solved, timeouts, errors,
and runtime metrics (average, median, and total solving time) are shown in Tables 2 to 5.

8.1  Translated n-sequence benchmarks

Similarly to what was done in [17], we translated QF_AX benchmarks into the NSeq theory by
replacing the sort of indices with integers, the sort of arrays with the sort of n-sequences, and the
array operations select and store with the n-sequence operations get and set , respectively.

To compare the native calculi approach with the encoding approach described in Sec-
tion 4, we also created a version of the benchmarks in which, in addition to translating the

1 Available at: ​h​t​t​p​s​:​​​/​​/​g​i​​t​.​f​r​a​m​​a​​-​c​​.​c​​o​m​/​​​p​u​b​/​c​​o​l​i​b​r​​​​i​​c​s​​/​-​​/​t​r​e​e​​/​a​c​t​a​_​i​n​f​o​r​​m​a​t​i​c​a​_​2​0​2​4 (commit SHA:
8d654690eb5c08643a87f0e41334f66311186e40)

1 3

33  Page 18 of 25

https://git.frama-c.com/pub/colibrics/-/tree/acta_informatica_2024

Reasoning over n-indexed sequences in SMT

benchmarks, we added the definitions of the NSeq theory operations using the operations of
the Seq and ADT theories.

Figure 4 shows that NS-EXT performs better overall on unsatisfiable benchmarks, solv-
ing more goals faster than all other solvers. While NS-BASE performs better than both cvc5
and z3, though it trails behind NS-EXT, cvc5-eager and cvc5-lazy.

Table 2 confirms that NS-EXT achieves the best overall result (74 goals solved) with one
of the lowest average runtimes (0.543s). Notably, NS-BASE solves slightly more problems
than cvc5 (45 vs. 44) with a significantly lower average runtime (0.138 vs. 1.570).

Table 2  Statistics on the performance of the solvers on quantifier-free unsatisfiable NSeq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 45 115 4 0 0.408 0.138 18.346
NS-EXT 74 90 0 0 0.543 0.102 40.159
cvc5 44 120 0 0 1.570 1.279 69.064
cvc5-eager 67 97 0 0 0.832 0.139 55.711
cvc5-lazy 69 95 0 0 0.886 0.156 61.156
z3 22 26 0 0 1.949 1.399 42.889

Fig. 5  Number of solved goals by accumulated time in seconds on quantifier-free Seq benchmarks trans-
lated from the QF_AX SMT-LIB benchmarks

Fig. 4  Number of solved goals by accumulated time in seconds on quantifier-free NSeq benchmarks
translated from the QF_AX SMT-LIB benchmarks

1 3

Page 19 of 25  33

H. R. Ait-El-Hara et al.

Since these benchmarks originate from array benchmarks and contain many get and set
operations which, as shown in the rules in Figure 2, require multiple decisions and introduce n
-sequence normal forms with small n-sequence components, the solver requires significant com-
putation time and does not scale very well on these benchmarks. Reasoning over such problems
would work better with clause learning which would allow a better handling of decisions.

Regarding satisfiable goals, only Colibri2 managed to determine Satisfiability within the time
limit, with NS-EXT clearly surpassing NS-BASE in both speed and the number of goals solved.
Table 3 shows that the average runtime of NS-EXT is also better than the one of NS-BASE.

8.2  Translated sequence benchmarks

As mentioned in Section 7.4, we implemented support for the Seq theory by encoding it on
top of the NSeq theory. To evaluate the performance of our support for the Seq theory, we
compared it with the Seq theories of cvc5 and Z3 on Seq benchmarks, which were translated
from QF_AX benchmarks.

The graph on the right in Figure 5 shows that on unsatisfiable goals, our NS-EXT imple-
mentation outperforms cvc5 and z3 in both time and the number of goals solved. Meanwhile,
NS-BASE initially solves more goals than cvc5, but solves fewer overall. Additionally,
cvc5-eager and cvc5-lazy perform better than the other solvers.

As seen in Table 4, cvc5-lazy solves the most goals and achieves a relatively low aver-
age runtime. However, NS-EXT solves nearly as many while maintaining a slightly lower
average runtime.

In the satisfiable case, Table 5 shows that cvc5-lazy solves the most goals (177), followed
by cvc5-eager (171), while NS-EXT solves slightly fewer (167) but with a much lower
average time per goal (0.176s vs. 0.327s and 0.443s). These trends are reflected in Figure
5, where the NS-EXT curve is steeper early on but levels off before reaching the maximum.
A similar trend can be noticed with NS-BASE compared to cvc5-eager, the two curves are
close to one another and cross each other at two points, before cvc5-eager takes over.

8.3  Discussion

In the context of program verification, performance on unsatisfiable goals is of greater
importance, although the satisfiable cases remain valuable. Since Colibri2 constructs con-
crete models before concluding satisfiability, we aim to improve our current model genera-
tion technique for n-sequences.

For unsatisfiable goals, our solver performs competitively with state-of-the-art SMT solvers
such as cvc5 and Z3. However, we have observed that certain goals which remain unsolved
within a short timeout (e.g., 5 seconds) also remain unsolved even with significantly longer time-
outs. This suggests potential performance bottlenecks in our propagators for the NSeq theory.

Table 3  Statistics on the performance of the solvers on quantifier-free satisfiable NSeq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 158 229 0 0 0.344 0.184 54.382
NS-EXT 169 218 0 0 0.259 0.113 43.753

1 3

33  Page 20 of 25

Reasoning over n-indexed sequences in SMT

A notable pattern visible in Figures 4 and 5 is the presence of inflection points in the
performance curves of NS-BASE and NS-EXT. These may indicate that the solver struggles
with specific classes of problems, warranting further investigation.

It is also worth noting that our translation from Seq to NSeq in Colibri2 often introduces
more complex terms. Additionally, Colibri2 does not currently implement clause learning,
which can make the search space exploration more costly compared to other SMT solvers.

9  Conclusion

In this paper, we explored the topic of reasoning over n-indexed sequences in SMT. We pro-
posed a theory for such sequences and discussed approaches for reasoning over it, whether
by using existing theories or by adapting calculi from the theory of sequences to this theory
and implementing the calculi in a solver. We discussed the various changes we had to bring
to the calculi to adapt them to our theory and mentioned different implementation details that
helped us obtain competitive performance results with state-of-the-art SMT solvers, despite
the absence of clause learning.

Looking ahead, we plan on delving deeper into different reasoning approaches for this
theory, exploring their respective strengths and weaknesses through benchmarking with n
-indexed sequences. We also aim to identify additional use cases, other that representing
Ada arrays, where n-indexed sequences appear as a natural choice.

Appendix A. Representation of n-indexed sequences using sequences
and algebraic data types

Table 4  Statistics on the performance of the solvers on quantifier-free unsatisfiable Seq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 45 117 2 0 0.410 0.139 18.449
NS-EXT 75 89 0 0 0.558 0.107 41.830
cvc5 43 121 0 0 1.265 0.733 54.392
cvc5-eager 78 86 0 0 0.787 0.108 61.367
cvc5-lazy 81 83 0 0 0.578 0.064 46.806
z3 9 39 0 0 0.112 0.018 1.007

Table 5  Statistics on the performance of the solvers on quantifier-free satisfiable Seq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 154 232 1 0 0.370 0.175 56.976
NS-EXT 167 220 0 0 0.176 0.108 29.363
cvc5 171 216 0 0 0.887 0.603 151.742
cvc5-eager 165 222 0 0 0.443 0.219 73.080
cvc5-lazy 177 210 0 0 0.327 0.150 57.821
z3 85 418 0 0 1.668 1.014 141.773

1 3

Page 21 of 25  33

H. R. Ait-El-Hara et al.

1 3

33  Page 22 of 25

Reasoning over n-indexed sequences in SMT

Appendix B. Proof that equivalence modulo relocation is an
equivalence relation

In this section we prove the claim that the equivalence modulo relocation relation in an
equivalence relation

Proof  Proposition 1: The =reloc relation is an equivalence relation.

	● (a) Reflexivity: Given an n-sequence s, s =reloc s holds since an n-sequence is equal to
itself, therefore equivalent (modulo relocation) to itself by definition.

	● (b) Symmetry:

Given two n-sequences s1 and s2, s1 =reloc s2 implies: l s2 = l s1 − f s1 + f s2 (1) and
∀i : Int, f s1 ≤ i ≤ l s1 ⇒ get(s1, i) = get(s2, i − f s1 + f s2) (2)
From rearranging (1) we get: l s1 = l s2 − f s2 + f s1 (3)
By subtracting f s1 − f s2 from the terms of the disequality in (2) we get:
∀i : Int, f s2 ≤ i − f s1 + f s2 ≤ l s1 − f s1 + f s2 ⇒ get(s1, i) = get(s2, i
− f s1 + f s2) (4)
From (2), we can replace l s1 − f s1 + f s2 with l s2 in (4), to get:
∀i : Int, f s2 ≤ i − f s1 + f s2 ≤ l s2 ⇒ get(s1, i) = get(s2, i − f s1 + f s2) (5)
if we introduce a variable j such that j = i − f s1 + f s2 in (5) we get:
∀j : Int, f s2 ≤ j ≤ l s2 ⇒ get(s1, j − f s2 + f s1) = get(s2, j) (6)
From (3) and (6), we deduce that s2 =reloc s1.

	● (c) Transitivity:

Given three n-sequences s1, s2 and s3, s1 =reloc s2 and s2 =reloc s3 imply that:
l s2 = l s1 − f s1 + f s2 (1)
∀i : Int, f s1 ≤ i ≤ l s1 ⇒ get(s1, i) = get(s2, i − f s1 + f s2) (2)
l s3 = l s2 − f s2 + f s3 (3)
∀i : Int, f s2 ≤ i ≤ l s2 ⇒ get(s2, i) = get(s3, i − f s2 + f s3) (4)
By replacing l s2 with l s1 − f s1 + f s2 in (3) we get:
l s3 = l s1 − f s1 + f s3 (5)
From (1) we get:
l s1 = l s2 + f s1 − f s2 (6)
By adding f s1 − f s2 to the terms of the disequality in (4), we get:
∀i : Int, f s1 ≤ i + f s1 − f s2 ≤ l s2 + f s1 − f s2 ⇒ get(s2, i) = get(s3, i − f s2 +
f s3) (7)
From (6), we can replace l s2 + f s1 − f s2 with l s1 in (7) and get:
∀i : Int, f s1 ≤ i + f s1 − f s2 ≤ l s1 ⇒ get(s2, i) = get(s3, i − f s2 + f s3) (8)
By introduction a variable j, such that i = j − f s1 + f s2 and replacing i with
j − f s1 + f s2 in (8) we get:
∀j : Int, f s1 ≤ j ≤ l s1 ⇒ get(s2, j − f s1 + f s2) = get(s3, j − f s1 + f s3) (9)
From (2) we get:
∀j : Int, f s1 ≤ j ≤ l s1 ⇒ get(s1, j) = get(s3, j − f s1 + f s3) (10)

1 3

Page 23 of 25  33

H. R. Ait-El-Hara et al.

From (5) and (10), we deduce that s1 =reloc s3.From (a), (b) and (c), we deduce that
=reloc is a reflexive, symmetric and transitive relation, it is therefore an equivalence
relation. � □

Author contributions  Hichem Rami Ait El Hara wrote the manuscript with support from François Bobot
and Guillaume Bury. Hichem Rami Ait El Hara conceived the original idea. Hichem Rami Ait El Hara and
François Bobot participated in the implementation of the tool. Hichem Rami Ait El Hara carried out the
experiments with inputs from François Bobot and Guillaume Bury. François Bobot and Guillaume Bury
supervised the project.

Funding  Open access funding provided by Université Paris-Saclay.

Data availability  No datasets were generated or analysed during the current study.

Declarations

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1.	 Ait-El-Hara, H.R., Bobot, F., Bury, G.: An SMT Theory for n-Indexed Sequences. In: Reger, G., Zohar,
Y. (eds.) Proceedings of the 22nd International Workshop on Satisfiability Modulo Theories. CEUR
Workshop Proceedings, vol. 3725, pp. 64–74. CEUR, Montreal, Canada (2024). ​h​t​t​p​s​:​/​/​c​e​u​r​-​w​s​.​o​r​g​/​V​o​
l​-​3​7​2​5​/​#​s​h​o​r​t​1​3​​​​​​​

2.	 Ait-El-Hara, H.R., Bobot, F., Bury, G.: On SMT Theory Design: The Case of Sequences. In: Kalpa
Publications in Computing, vol. 18, pp. 14–29. EasyChair, Balaclava, Mauritius (2024). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​2​9​0​0​7​/​7​5​t​l​​​​​. ISSN: 2515-1762

3.	 Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A., Mohamed,
M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.:
cvc5: A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243,
pp. 415–442. Springer, Munich, Germany (2022). https://doi.org/10.1007/978-3-030-99524-9_24

4.	 Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D.
(eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK) (2010)

5.	 Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware heuristics. In: Proceed-
ings of the 17th Conference on Formal Methods in Computer-Aided Design. FMCAD ’17, pp. 55–59.
FMCAD Inc, Austin, Texas (2017)

6.	 Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB Format for Sequences and Regular
Expressions. Strings (2012)

7.	 Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: CDSAT for Nondisjoint Theories with Shared
Predicates: Arrays With Abstract Length. Satisfiability Modulo Theories workshop, CEUR Workshop
Proceedings 3185 (2022). Accessed 2024-02-23

1 3

33  Page 24 of 25

http://creativecommons.org/licenses/by/4.0/
https://ceur-ws.org/Vol-3725/#short13
https://ceur-ws.org/Vol-3725/#short13
https://doi.org/10.29007/75tl
https://doi.org/10.29007/75tl
https://doi.org/10.1007/978-3-030-99524-9_24

Reasoning over n-indexed sequences in SMT

8.	 Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In: Emerson, E.A., Namjoshi,
K.S. (eds.) Verification, Model Checking, and Abstract Interpretation, pp. 427–442. Springer, Berlin,
Heidelberg (2006). https://doi.org/10.1007/11609773_28

9.	 Christ, J., Hoenicke, J.: Weakly Equivalent Arrays. In: Lutz, C., Ranise, S. (eds.) Frontiers of Combin-
ing Systems. Lecture Notes in Computer Science, pp. 119–134. Springer, Cham (2015). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​0​0​7​/​9​7​8​-​3​-​3​1​9​-​2​4​2​4​6​-​0​_​8​​​​​​​

10.	 Furia, C.A.: What’s Decidable about Sequences? In: Bouajjani, A., Chin, W.-N. (eds.) Automated Tech-
nology for Verification and Analysis, pp. 128–142. Springer, Berlin, Heidelberg (2010). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​0​0​7​/​9​7​8​-​3​-​6​4​2​-​1​5​6​4​3​-​4​_​1​1​​​​​​​

11.	 Ghilardi, S., Gianola, A., Kapur, D., Naso, C.: Interpolation Results for Arrays with Length and Max-
Diff. ACM Trans. Comput. Log. 24(4), 28–12833 (2023). https://doi.org/10.1145/3587161

12.	 Jeż, A., Lin, A.W., Markgraf, O., Rümmer, P.: Decision Procedures for Sequence Theories. In: Enea, C.,
Lal, A. (eds.) Computer Aided Verification. Lecture Notes in Computer Science, pp. 18–40. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-37703-7_2

13.	 Lesbre, D., Lemerre, M., Ait-El-Hara, H.R., Bobot, F.: Relational abstractions based on labeled union-
find. Proc. ACM Program. Lang. 9(PLDI) (2025). https://doi.org/10.1145/3729298

14.	 Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) Theory Solver for a Theory
of Strings and Regular Expressions. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification, pp.
646–662. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_43

15.	 Marre, B., Bobot, F., Chihani, Z.: Real Behavior of Floating Point Numbers. In: The SMT Workshop,
Heidelberg, Germany (2017). SMT 2017, 15th International Workshop on Satisfiability Modulo Theo-
ries. https://cea.hal.science/cea-01795760

16.	 Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

17.	 Sheng, Y., Nötzli, A., Reynolds, A., Zohar, Y., Dill, D., Grieskamp, W., Park, J., Qadeer, S., Barrett, C.,
Tinelli, C.: Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences. J. Autom. Reason.
67(3), 32 (2023). https://doi.org/10.1007/s10817-023-09682-2

18.	 Varghese, G., Lauck, T.: Hashed and hierarchical timing wheels: Data structures for the efficient imple-
mentation of a timer facility. In: Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles, vol. 21, pp. 25–38. Association for Computing Machinery, New York, NY, USA (1987).
https://doi.org/10.1145/37499.37504

19.	 Wang, Q., Appel, A.W.: A Solver for Arrays with Concatenation. J. Autom. Reason. 67(1), 4 (2023).
https://doi.org/10.1007/s10817-022-09654-y

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 25 of 25  33

https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-642-15643-4_11
https://doi.org/10.1007/978-3-642-15643-4_11
https://doi.org/10.1145/3587161
https://doi.org/10.1007/978-3-031-37703-7_2
https://doi.org/10.1145/3729298
https://doi.org/10.1007/978-3-319-08867-9_43
https://cea.hal.science/cea-01795760
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10817-023-09682-2
https://doi.org/10.1145/37499.37504
https://doi.org/10.1007/s10817-022-09654-y

	﻿Reasoning over n-indexed sequences in SMT
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Related work

	﻿2﻿ ﻿Notation
	﻿3﻿ ﻿The theory of ﻿￼﻿﻿-indexed sequences
	﻿﻿4﻿ ﻿Reasoning with existing theories
	﻿﻿5﻿ ﻿Porting calculi from the Seq theory to the NSeq theory
	﻿﻿5.1﻿ ﻿Common calculus
	﻿5.2﻿ ﻿The base calculus
	﻿5.3﻿ ﻿The extended calculus

	﻿6﻿ ﻿Cacluli soundness proofs
	﻿6.1﻿ ﻿Common calculus soundness
	﻿6.2﻿ ﻿NS-BASE soundness
	﻿6.3﻿ ﻿NS-EXT soundness

	﻿﻿7﻿ ﻿Implementation
	﻿7.1﻿ ﻿Equivalence modulo relocation
	﻿7.1.1﻿ ﻿Equivalence modulo relocation with undirected graphs
	﻿7.1.2﻿ ﻿Equivalence modulo relocation with a labeled union-find data structure

	﻿7.2﻿ ﻿Simplification rewrites
	﻿7.3﻿ ﻿Reasoning
	﻿﻿7.4﻿ ﻿Support for the Seq theory
	﻿8﻿ ﻿Experimental evaluation
	﻿8.1﻿ ﻿Translated ﻿￼﻿﻿-sequence benchmarks
	﻿8.2﻿ ﻿Translated sequence benchmarks
	﻿8.3﻿ ﻿Discussion

	﻿9﻿ ﻿Conclusion
	﻿﻿Appendix A. Representation of ﻿n﻿-indexed sequences using sequences and algebraic data types
	﻿﻿Appendix B. Proof that equivalence modulo relocation is an equivalence relation
	﻿References

