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Abstract
The SMT (Satisfiability Modulo Theories) theory of arrays is well-established and widely 
used, with various decision procedures and extensions developed for it. However, recent 
contributions suggest that developing tailored reasoning for some theories, such as se-
quences and strings, can be more efficient than reasoning over them through axiomatiza-
tion over the theory of arrays. In this paper, we are interested in reasoning over n-indexed 
sequences as they are found in some programming languages, such as Ada. We propose 
an SMT theory of n-indexed sequences and explore different ways to represent and reason 
over n-indexed sequences using existing theories, as well as tailored calculi for this theory.

1  Introduction

In the SMT theory of sequences, sequences are viewed as a generalization of strings to 
non-character elements, with possibly infinite alphabets. These sequences are dynamically 
sized, and their theory has a rich signature, enabling operations such as selecting elements 
of a sequence by their index, concatenating sequences, extracting sub-sequences, and more. 
This expressiveness makes the theory of sequences well-suited for representing many com-
mon data structures in programming languages, such as arrays in the C language, lists in 
Python, etc.

In contrast, the theory of arrays is less expressive. It only supports selecting and updat-
ing a single value at a single index, and arrays have fixed sizes determined by the cardinal-
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ity of the sort of indices. While sequences have dynamic lengths and allow operations on 
sub-sequences. To represent sequences using the theory of arrays, it is necessary to extend 
the theory and axiomatize the necessary properties, such as dynamic length and additional 
operations like concatenation and sub-sequence extraction.

We are interested in a variant of the theory of sequences, which we call the theory of n
-indexed sequences. These n-indexed sequences are defined as ordered collections of values 
of the same sort indexed from a first index n to a last index m. Such sequences are present 
in some programming languages such as Ada. Since there is no dedicated theory for such 
sequences, reasoning over them cannot be achieved straightforwardly using the existing 
theories of arrays and sequences. It is therefore necessary to use extensions and axiomatiza-
tions to reason over them.

In this paper, we will present the theory of n-indexed sequences, its signature and seman-
tics, as well as different approaches to reason over it. These include leveraging existing 
theories and adapting calculi designed for the theory of sequences to the theory of n-indexed 
sequences.

1.1  Related work

The SMT theory of sequences was introduced by Bjørner et al. [6]. Several works have 
since explored its syntax and semantics [2, 6] and its decidability [10, 12]. Our contribution 
builds upon a previously published extended abstract [1], in which we introduced the theory 
of n-indexed sequences and presented various reasoning approaches.

Our work draws on the contribution by Sheng et al. [17], which describes the calculi for 
the theory of sequences implemented in the cvc5 SMT solver [3]. The Z3 SMT solver [16] 
also supports the theory of sequences, although we are unaware of any published contribu-
tions detailing its reasoning techniques. The calculi for the theory of sequences described in 
[17] are based on calculi developed for the theories of strings [5, 14] and arrays [9], which 
have been generalized and adapted for sequence reasoning.

Other contributions took a different approach, relying more on the theory of arrays and 
extending it with properties present and desired in sequences, such as length constraints [7, 
8, 11] and operations like concatenation [19].

2  Notation

In the rest of the paper, we refer to the theory of arrays as the Array theory, the theory of 
sequences as the Seq theory, the theory of n-indexed sequences as the NSeq theory and the 
theory of Algebraic Data Types as the ADT theory. We also use the following notation: = 
for equality, ≡ for logical equivalence, and =⇒  for implication. If a formula a = b is true 
in the context of the solver, we say that a and b are (semantically) equivalent.

We represent the sort of integers with Int, the sort of n-indexed sequences with NSeq E, 
where E is the sort of the elements stored in the n-indexed sequences. We refer to n-indexed 
sequences as n-sequences.

We use s and sn, kn, wn, yn, and zn (where n is an integer) to represent n-sequence 
terms. The symbols i and j represent general index terms, f and l represent index terms that 
denote bounds of n-sequences, and v and u represent n-sequence element terms.
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We present the calculi we developed as a set of inference rules that handle the symbols of 
the NSeq theory. In the inference rules, the statements above the line are the premises, and 
the statements below it are the conclusions. The|| symbol separates the different cases of the 
conclusions. Terms that do not appear in the premise of an inference rule but do appear in 
the conclusion are to be considered fresh variables.

3  The theory of n-indexed sequences

We present in this section the theory of n-indexed sequences. The signature of the NSeq 
theory is presented in Table 1, along with the notation of the symbols of the theory that we 
use in the remainder of the paper.

Definition 1  (Bounds) The bounds of an n-sequence s are its first and last indices, which are 
respectively denoted as f s and l s, and correspond to the values returned by the functions 
nseq.first(s) and nseq.last(s), respectively. An index i is said to be within the bounds of an 
n-sequence s if:

	 f s ≤ i ≤ l s

Definition 2  An n-sequence s is said to be empty if l s < f s. Two empty n-sequences s1 
and s2 are equal if f s1 = f s2  and l s1 = l s2 . Otherwise, they are distinct.

The following list describes the semantics of each symbol in the theory:

	● f s: the first index of s.
	● l s: the last index of s.
	● get (s1, i): If f s1 ≤ i ≤ l s1 , returns the element associated with i in s; otherwise, re-

turns an uninterpreted value. An uninterpreted value is one that is not constrained and 
can be any value of the right sort.

	● set (s1, i, v): If f s1 ≤ i ≤ l s1 , creates a new n-sequence s2 that has the same bounds 
as s1, where ∀k. f s1 ≤ k ≤ l s1 =⇒ get (s2, k) = ite (k = i, v, get (s1, k)). Other-
wise, returns s1.

	● const (f, l, v): Creates an n-sequence s with f s = f ∧ l s = l, where 
∀k. f ≤ k ≤ l =⇒ get (s, k) = v.

Table 1  The signature of the theory of n-indexed sequences
SMT-LIB symbol Sort Notation
nseq.first NSeq E → Int f _

nseq.last NSeq E → Int l _
nseq.get NSeq E → Int → E get (_, _)
nseq.set NSeq E → Int → E → NSeq E set (_, _, _)
nseq.const Int → Int → E → NSeq E const (_, _, _)
nseq.relocate NSeq E → Int → NSeq E relocate (_, _)
nseq.concat NSeq E → NSeq E → NSeq E concat (_, _)
nseq.slice NSeq E → Int → Int → NSeq E slice (_, _, _)
nseq.update NSeq E → NSeq E → NSeq E update (_, _)
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	● relocate (s1, f): Given an n-sequence s1 and an index f, returns a 
new n-sequence s2 with f s2 = f ∧ l s2 = f + l s1 − f s1 , where 
∀k. f ≤ k ≤ f + l s1 − f s1 =⇒ get (s2, k) = get (s1, k − f s2 + f s1 ).

	● concat (s1, s2): If s1 is empty, returns s2. If s2 is empty, returns 
s1. If f s2 = l s1 + 1, returns a new n-sequence s3 with f s3 = f s1 ∧ l s3 = l s2 , where 
∀k. f s1 ≤ k ≤ l s2 =⇒ get (s3, k) = ite (k ≤ l s1 , get (s1, k), get (s2, k)). Other-
wise, returns s1.

	● slice (s1, f, l): If f s1 ≤ f ≤ l ≤ l s1 , returns a new n-sequence s2 with 
f s2 = f ∧ l s2 = l, where ∀k. f ≤ k ≤ l =⇒ get (s2, k) = get (s1, k). Otherwise, 
returns s.

	● update (s1, s2): If s1 is empty, s2 is empty, or the property f s1 ≤ f s2 ≤ l s2 ≤ l s1  does 
not hold, returns s1. Otherwise, returns a new n-sequence s3 that has the same bounds 
as s1, where ∀k. f s1 ≤ k ≤ l s1 =⇒ get (s3, k) = ite ( f s2 ≤ k ≤ l s2 , get s2, k, 
get s1, k).

Definition 3  (Extensionality) The theory of n-indexed sequences is extensional, which 
means that n-sequences that have the same bounds and contain the same elements are equal. 
Therefore, given two n-sequences s1 and s2:

	
s1 = s2 ≡

f s1 = f s2 ∧ l s1 = l s2 ∧ (∀i. f s1 ≤ i ≤ l s1 → get (s1, i) = get (s2, i))

Different semantics can be chosen for the functions of this theory, particularly the slice  
and update  functions. In [2], we defined a set of theory design criteria. In particular, we 
showed that previously proposed semantics for the update  function in the Seq theory were 
not symmetric (an overlapping update  on the right was different from one on the left), 
which does not align with the design criterion of avoiding surprising the users. Instead, we 
proposed a symmetric semantic: in all cases of overlapping update , the shared indices are 
updated. It is possible to adopt the same semantics for the update  operator in the NSeq 
theory. However, we chose a different, yet still symmetrical, semantic by not updating the 
n-sequence whenever the update overlaps its bounds. This choice is justified by our main 
use case, which is representing arrays from the Ada programming language. That is also the 
reason for the choice of the semantics of the concat  and slice  functions.

4  Reasoning with existing theories

One way to reason over the NSeq theory is by using the theory of arrays. It is done by 
extending it with the symbols of the NSeq theory and adding the right axioms that capture 
the semantics of the corresponding symbols in the NSeq theory. However, this approach has 
considerable limitations, as operations on slices of n-sequences are handled using axioms 
that quantify over all the elements of those slices, and the handling of these quantifiers tends 
to be costly for solvers.

Alternatively, it is possible to use the Seq and ADT theories to encode n-sequences. This 
can be done by defining n-sequences as a pair of a sequence and the first index (the offset 
to zero):
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The other symbols of the NSeq theory can also be defined using the NSeq data type 
defined above, for example:

Except for the const  function which needs to be axiomatized:

The full NSeq theory, defined using the Seq and ADT theories, is included in Appendix 
A.

Although this approach allows us to reason over n-indexed sequences, it is not ideal to 
depend on two theories to do so, as it implies that the performance of reasoning about the 
theory is tied to the performance of reasoning over the other two theories. Additionally, the 
differences in semantics between the update  and slice  functions of the NSeq theory and 
the seq.update and seq.extract functions of the Seq theory make the definitions relatively 
complex and costly to handle by solvers.

Another difference is in empty n-sequences. With this encoding, empty n-sequences that 
have the same first index will always have the same last index (one subtracted from the first 
index). On the other hand, in the original theory, an empty n-sequence can have any last 
index that is lesser than the first index. The encoding could be made faithful to the original 
theory by adding a specific constructor in the ADT for empty n-sequences. However, this 
would eventually hinder the performance of the solvers that use the encoding, especially 
since the difference in semantics is not problematic. Empty n-sequences typically represent 
corner cases or cases of failure, and the position of their last index tends to be irrelevant for 
determining satisfiability.
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5  Porting calculi from the Seq theory to the NSeq theory

To develop our calculi over the NSeq theory, we based our work on the calculi developed 
by Sheng et al. [17] for the Seq theory, where two calculi were proposed. The first is called 
the BASE calculus, which is based on a string theory calculus that reduces the functions of 
the theory to concatenations of sequences. The second is called the EXT calculus, which 
handles the functions of the theory that select and store an element at an index using array-
like reasoning. Our versions of these calculi are referred to as NS-BASE and NS-EXT, 
respectively.

The NSeq theory differs from the Seq theory in both the syntax and semantics of many 
symbols:

	● const  and relocate  do not appear in the Seq theory, while seq.empty, seq.unit, and seq.
len do not appear in the NSeq theory.

	● The seq.nth function corresponds to the get  function in the NSeq theory.
	● seq.update from the Seq theory, with a value as the third argument, corresponds to set  

in the NSeq theory, while seq.update with a sequence as the third argument corresponds 
to update  in the NSeq theory, which takes only two n-sequences as arguments.

	● seq.extract in the Seq theory takes a sequence, an offset, and a length, and corresponds 
to slice  in the NSeq theory, which takes an n-sequence, a first index, and a last index.

	● The concatenation function (seq.++) in the Seq theory is n-ary, and it corresponds to 
concat  in the NSeq theory, which is binary.

Therefore, we needed to make substantial changes to the Seq theory calculi to adapt them 
to the NSeq theory. In this section, we present the resulting calculi. We assume that we are 
in a theory combination framework where reasoning with the theories of integer arithmetic 
and booleans is supported, and where unsatisfiability in one of the theories implies unsatisfi-
ability of the entire reasoning.

5.1  Common calculus

Definition 4  (Equivalence modulo relocation) Given two n-sequences s1 and s2, the terms 
are said to be equivalent modulo relocation, denoted by the relation s1 =reloc s2, which is 
defined as:

	
s1 =reloc s2 ≡

l s2 = l s1 − f s1 + f s2 ∧ ∀i : Int, f s1 ≤ i ≤ l s1 ⇒ get (s1, i) = get (s2, i − f s1 + f s2 )

Two n-sequences are equivalent modulo relocation if they are equal or start at different 
indices but contain the same sequence of elements.

Proposition 1  The equivalence modulo relocation relation is an equivalence relation 
between n-sequences.

Proof  The proof of Proposition 1 is in Appendix B. � □
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Definition 5  (n-sequence normal form) For simplicity and consistency with the Seq theory cal-
culi, we introduce an internal concatenation operator  ::, for which the following invariant holds:

	 s = s1::s2 =⇒ f s = f s1 ∧ l s = l s2 ∧ f s2 = l s1 + 1

This operator is used to normalize n-sequences. It differs from concat  in that it does not 
require checking the condition f s2 = l s1 + 1 before concatenation, as this condition is 
ensured by the invariant.

Assumption 1  We assume that the following simplification rewrites are applied whenever 
possible:

	

s1::s2 → s1 when l s2 < f s2 (1)
s1::s2 → s2 when l s1 < f s1 (2)
s1::s2 → s1::w1:: . . . ::wn when s2 = w1:: . . . ::wn (3)
s1::s2 → w1:: . . . ::wn::s2 when s1 = w1:: . . . ::wn (4)

(1) and (2) remove empty n-sequences from the normal form. (3) and (4) ensure that when 
an n-sequence appears in the normal form of another one and has its own normal form, then 
it is replaced by its normal form.
Figure 1 illustrates a set of common rules shared between the two calculi NS-BASE and 
NS-EXT. The rules Const-Bounds and Reloc-Bounds propagate the bounds of constant and 
relocated n-sequences, which are created using the const  and relocate  functions, respec-
tively. The rules NS-Slice, NS-Concat, and NS-Update handle slice , concat , and update  
by normalizing the n-sequences under appropriate conditions.

If an n-sequence has two normal forms where distinct terms begin at the same index but 
end at different indices, the NS-Split rule rewrites the longer term as a concatenation of the 
shorter one and a fresh variable. The NS-Comp-Reloc rule propagates concatenations over 
the =reloc rule, while Reloc-Inv ensures that two n-sequences that are equivalent modulo 
relocation are equal if they start at the same index. The NS-Exten rule is the extensionality 
rule, which states that any two n-sequences s1 and s2 are either equal or distinct. They can 
be distinct either for having different bounds, for containing distinct components that have 
the same bounds, or differing in at least one element.

5.2  The base calculus

The base calculus comprises the rules in Figures 1 and 2. The rules R-Get and R-Set handle 
the get  and set  operations by introducing new normal forms for the n-sequences they 
operate on. In the R-Get rule, when i is within the bounds of s, a new normal form of s is 
introduced. This form includes a constant n-sequence of size one at the ith position storing 
the value v, and two variables, k1 and k2, to represent the left and right segments of the n
-sequence s, respectively.

The R-Set rule operates similarly: when i is within the bounds of s2, new normal forms 
are introduced for both s1 and s2. These forms share two variables, k1 and k3, which rep-
resent the segments to the left and right of the ith index. For s1, the normal form contains a 
constant n-sequence of size one holding the value v at the ith index, while s2’s normal form 
contains an n-sequence variable, k2, also of size one at the ith index.

1 3
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Fig. 2  NS-BASE specific infer-
ence rules
 

Fig. 1  Common inference rules for the NS-BASE and NS-EXT calculi
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5.3  The extended calculus

The extended calculus consists of the rules in Figures 1 and 3. It differs from the base calculus 
by handling the get  and set  functions similarly to their treatment in the array decision pro-
cedure described in [9]. The Get-Intro rule introduces a get  operation from a set  operation. 
The Get-Set rule, commonly referred to as the read-over-write or select-over-store rule in the 
Array theory, ensures that a get  operation applied over a set  operation returns the right value.

The Set-Bound rule ensures that a set  operation is either performed within the bounds 
of the target n-sequence or produces an n-sequence equivalent to the original one on which 
set  was applied. The Get-Concat, Set-Concat, and Set-Concat-Inv rules illustrate how the 

Fig. 3  NS-EXT specific inference rules
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get  and set  operations are handled when applied to an n-sequence in normal form, where 
the operations affect the right component of the normal form. The Get-Const rule addresses 
the special case where a get  operation is applied to a constant n-sequence. Lastly, the Get-
Reloc rule enables the propagation of constraints on elements of an n-sequence to others 
that are equivalent modulo relocation to it.

6  Cacluli soundness proofs

We place ourselves in a CP (Constraint Programming) context in which each term is associated 
to a set of domains that are refined throughout the reasoning. The reasoning is done by applying 
inference rules until saturation, doing constraint propagation as well as decisions. A problem is 
unsatisfiable if exhaustive exploration of the resolution space leads to no solution, meaning that 
all orders of decisions and propagations lead to contradictions. Contradictions occur when a term 
ends up with domains which cannot satisfy the constraints of the problem. A problem is satisfi-
able if there exist a resolution path in which the domains of the terms allow for the computing 
of a model that satisfies the constraints of the problem, and it is only when a model is explicitly 
computed and checked to be satisfiable that a problem can be answered as satisfiable.

In this section, we prove the soundness of the inference rules that constitute the NS-
BASE and NS-EXT calculi. We say that a rule is sound if by applying it when its premises 
are respected, it produces an equisatisfiable environment to the one before its applica-
tion. That is verified by proving that the consequences of the inference rules can in fact be 
deducted from their premises.

6.1  Common calculus soundness

In this section we prove the soundness of the rules in Figure 1.

Proof  Const-Bounds is sound

Given s = const (f, l, v), the rule just sets the bounds for the n-sequence s to f and l, 
following the semantics of the const  function. � □

Proof  Reloc-Bounds is sound

Given s1 = relocate (s2, i), the rule states:

	● if i = f s2  then s1 = s2, which is sound by Definition 4 to defined the bounds and Defi-
nition 3 to prove equality.

	● otherwise it sets the bounds of s1 and adds the relation s1 =reloc s2, which is sound by 
Definition 4.� □

Proof  Reloc-Inv is sound

Given s1 =reloc s2, the rule propagates that s1 = s2 if they have the same first index, 
and that s1 ̸= s2 otherwise, which are sound by Definitions 4 and 3. � □

1 3
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Proof  NS-Slice is sound

Given s1 = slice (s, f, l) the rule states that if f < f s or l < f  or l s < l, then 
s1 = s, otherwise the rule introduces two n-sequences fresh variables k1 and k2 such that 
s = k1::s1::k2 which amounts to stating that s1 is equal to the section of the n-sequence s 
that is within the bounds f and l which are the bounds of s1, which follows the semantics of 
the slice  function. � □

Proof  NS-Concat is sound

Given s = concat (s1, s2) the rule states that if s1 is empty then s = s2, if s2 is empty 
or f s2 ̸= l s1 + 1 then s = s1, otherwise s = s1::s2 which corresponds to the semantics of 
the concat  function. � □

Proof  NS-Update is sound

Given s1 = update (s2, s) the rule states that if l s < f s or f s < f s2  or l s2 < l s, then 
s1 = s2, otherwise it introduces three n-sequences fresh variables k1, k2 and k3 such that 
s1 = k1::s::k3 and s2 = k1::k2::k3, stating that s1 shares the same elements with s2 on all 
indices outside the bounds s, wherein s1 has the same elements as s, while s2 elements within 
the bounds of s are those of k, which corresponds to the semantics of the update  function. � □

Proof  NS-Comp-Reloc is sound

Given s1 = k1::k2:: . . . ::kn and s1 =reloc s2, the rule states that if 
f s1 = f s2  then s1 = s2, otherwise it states that: s2 = relocate(k1, f s2 ):: 
relocate(k2, f k2 − f s1 + f s2 ):: . . . ::relocate(kn, f kn − f s1 + f s2 ), which corresponds 
to computing a normal form for s2 by relocation that of s1, which is sound by Definitions 4 
and 5. � □

Proof  NS-Exten is sound.

Given two n-sequences s1 and s2, the rule states that they are either equal or unequal, 
with uneqaulity being presented in three cases, the first case is when the two n-sequences 
have distinct bounds, the second case is when the normal forms of the two n-sequences 
contain two distinct components which have the same bounds, and the third case is when 
there exists an index within the bounds of the two n-sequences in which they hold distinct 
elements, which is sound by Definition 3. � □

6.2  NS-BASE soundness

In this section we prove the soundness of the rules in Figure 2.

Proof  R-Get is sound

1 3
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Given v = get (s, i), the rule does nothing if i is outside the bounds of s, otherwise it 
states that s = k1:: const (i, i, v)::k2 with k1 and k2 as fresh n-sequence variables, which 
amounts to stating that the element at the ith index in s is equal to v, and which corresponds 
to the semantics of the get  function. � □

Proof  R-Set is sound

Given s1 = set (s2, i, v), the rule states:

	● If i is within the bounds of s2, then the fresh n-sequence variables k1, k2 and k3 are intro-
duced and s1 = k1::const(i, i, v)::k3 ∧ s2 = k1::k2::k3 is propagated. It states that at the 
ith index, s1 contains const (i, i, v), while s2 contains k2. And on the other indices, s1 and 
s2 share the same elements, corresponding to the elements contained in the n-sequence vari-
ables k1 and k3. That is sound by the semantics of the set  function and Definition 5.

	● If i is outside the bounds of s2, then s1 = s2, which is sound by the semantics of the set  
function.� □

6.3  NS-EXT soundness

In this section we prove the soundness of the rules in Figure 3.

Proof  Get-Concat is sound

Given v = get (s, i) and s = w1:: . . . ::wn, the rule does nothing if i is outside the bounds 
of s, otherwise it states that get (wm, i) = v such that 1 ≤ m ≤ n, wm is one of the com-
ponents w1:: . . . ::wn and f wm ≤ i ≤ l wm . It amounts to stating that the ith element of s is 
equal to the ith element of the component of s’s n-sequence normal form that encompasses 
the i index, which is sound by the semantics of the get  function Definition 5. � □

Proof  Set-Concat is sound

Given s1 = set (s2, i, v) and s2 = w1:: . . . ::wn, the rule does nothing if i is outside the 
bounds of s2, otherwise it sets the n-sequence normal form of s1 to the same as s2 except on the 
component wm, such that wm is within w1:: . . . ::wn and f wm ≤ i ≤ l wm , which is replaced 
by set (wm, i, v), which amounts to applying the set  function to the component of s2’s normal 
that encompasses the index i, which is sound by the definition of set  and Definition 5. � □

Proof  Set-Concat is sound

Given s1 = set (s2, i, v) and s1 = w1:: . . . ::wn, the rule does nothing if i is outside the 
bounds of s2, otherwise it sets the n-sequence normal form of s2 to the same as s1 except 
on the component wm, such that wm is within w1:: . . . ::wn and f wm ≤ i ≤ l wm , which is 
replaced by a fresh n-sequence variable k, such that wm = set (k, i, v), which amounts to 
saying that s2 has the same normal form components as s1 except on the component with 
encompasses the index i, which is sound by the definition of set  and Definition 5. � □
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Proof  Get-Const is sound

Given s = const (f, l, v) and u = get (s, i), if i is within the bounds of s, then u = v 
since s is a constant n-sequence, otherwise the rule does nothing, which is sound by the 
semantics of the get  and const  functions. � □

Proof  Set-Bound is sound

Given s1 = set (s2, i, v), the rule states that:

	● Either s1 = s2, due to i being outside the bounds of s2 or because v = get (s2, i), which 
is sound by the semantics of the set  and get  functions

	● Or i is within the bounds of s2, s1 and s2 have equal bounds and v ̸= get (s2, i), which 
is sound by the semantics of the set  and get  functions� □

Proof  Get-Set is sound

Given s1 = set (s2, i, v) and u = get (s1, j), if i is not within the bounds of s1 then the 
rule does nothing, otherwise:

	● If i is within the bounds of s2 and i = j then u = v, which is sound by the semantics of 
the get  and set  functions.

	● If i is within the bounds of s2 and i ̸= j then u = get (s2, j), which is sound by the 
semantics of the get  and set  functions.� □

Proof  Get-Intro is sound

Given s1 = set (s2, i, v), the rule states that if i is within the bounds of s2, then 
v = get (s1, i), otherwise the rule does nothing, which is sound by the semantics of the 
functions get  and set . � □

Proof  Get-Reloc is sound

Given v = get(s1, i) and s1 =reloc s2, the rule does nothing if i is not within the bounds 
of s1, otherwise it states that v = get (s2, i − f s1 + f s2 ) which is sound by Definition 4. 
� □

7  Implementation

To evaluate the performance of the calculi described in the previous section, we implemented 
them in Colibri2. Colibri2 is a CP (Constraint Programming) solver used to reason about SMT 
formulas across various theories, including linear and non-linear integer and real arithmetic, 
floating-point arithmetic, fixed-size bit-vectors, and arrays. Colibri2 is a reimplementation and 
extension of the COLIBRI [15] CP solver. Unlike SAT and SMT solvers, Colibri2 does not sup-
port clause learning. However, it provides greater control over the scheduling of propagations 
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for theory developers and simplifies theory combination. Before declaring a formula satisfiable, 
Colibri2 explicitly computes a model and verifies it against the input formula, avoiding the need 
for a combination framework to maintain model soundness. Nevertheless, a theory combination 
framework can still be useful to make computing satisfiable models more efficient.

In Colibri2, a term from any theory can be associated with an arbitrary number of domains, 
each domain holding some specific information about the term. For example, in the case of 
arithmetic terms, the interval union domain is used represent all possible values the term can 
take. When the equivalence classes of two terms are merged, their domains are also merged. 
Any theory in Colibri2 can perform constraint propagation, which involves pruning the 
domains of terms and propagating updates to other parts of the system. This ensures that other 
theories using the terms affected by the constraint are informed of the updated domain and can 
act on this information. Constraint propagation can take the form of assigning a value to a term 
or refining one of its domains. For instance, in integer arithmetic, propagating the constraint 
x ≥ 0 for an integer term x restricts its interval domain to [0, +∞).

Colibri2 also supports semantic decisions. A decision involves registering a backtracking 
point and branching based on the assumption that a given proposition holds. In a given prob-
lem, the proposition is assumed to hold, and satisfiability is checked under this assumption. 
If the problem is satisfiable, it is solved. Otherwise, the solver backtracks to the backtrack-
ing point and explores a new branch where an alternative assumption, typically the nega-
tion of the first one, holds. Decisions can also involve constraints on terms, encompassing 
multiple complementary constraints over one or more terms.

When neither propagations nor decisions can be made, another phase, called the last effort 
phase, is started. The last effort phase is another propagation phase that is used to do costlier 
propagations that we don’t want to do in the first propagation phase. These include calls to the 
simplex algorithm and quantifier instantiations that create new terms. The last effort phase can 
also introduce new decisions, or even additional propagations for the next last effort phases.

The implementation of the scheduler uses an efficient time-wheel data structure (similar 
to §6.2 in [18]), which allows for a good trade-off between prioritizing higher-priority propa-
gations and ensuring fairness. Prioritizing faster propagations is often beneficial, but such 
propagations can sometimes loop and lead to slow convergence. For example, local interval 
propagation starting with x, y ∈ [0, 232] with constraints x < y and y < x will remove only 
one integer from the domain per propagation. Using the time-wheel data structure ensures 
low-priority propagations are scheduled and executed before the slow convergence completes.

The scheduler also ensures that last effort propagations that are found to be useful, as 
they lead to contradictions, are promoted to the main propagation phase after backtracking. 
These propagations are then executed earlier instead of staying in the last effort phase.

In this section, we discuss our implementation choices, particularly how equivalence 
modulo relocation (cf. Definition 4), is represented and used, as well as how the inference 
rules that formalize the calculi are applied in practice.

7.1  Equivalence modulo relocation

As described in Section 5.1, the =reloc  relation links pairs of n-sequences that contain the 
same sequences of elements but have different starting indices. Proposition 1 asserts that the 
=reloc  relation is an equivalence relation. Therefore, we say that n-sequence terms that are 
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equivalent modulo relocation to one another, eventually transitively, are in the same =reloc  
class. We present two ways to handle these classes of n-sequences.

7.1.1  Equivalence modulo relocation with undirected graphs

A straightforward way to represent such relations is to use an undirected graph in which the 
vertices represent n-sequences, and an edge between two vertices indicates that the two n
-sequences are equivalent modulo relocation. The graph is undirected because the =reloc  
relation is an equivalence relation (cf. Proposition 1).

Equivalence modulo relocation is used for constraint propagation, whether of n-sequence 
normal forms through the NS-Comp-Reloc rule in Figure 1 or of constraints on elements 
through the Get-Reloc rule in Figure 3. It is also used for equality detection through the 
Reloc-Inv rule in Figure 1. To efficiently perform constraint propagation over the =reloc  
relation, it is necessary to retrieve the =reloc  class of any given n-sequence.

Using a graph data structure, constraint propagation can be achieved through graph 
exploration algorithms, such as Breadth-First Search, to find all elements of the =reloc  
class of a given n-sequence, or by using an auxiliary data structure that associates to every 
n-sequenceall the elements of its =reloc  class. However, these approaches are costly, the 
first due to the time complexity of graph exploration, and the second due to the memory and 
time required for maintaining the auxiliary data structure.

7.1.2  Equivalence modulo relocation with a labeled union-find data structure

We opted for a different approach based on the labeled union-find data structure [13]. This 
structure extends the traditional union-find by labeling the edges in the trees that represent 
equivalence classes. It is used to represent equivalence relations parameterized by the afore-
mentioned labels. These labels must satisfy the group axioms: they must be composable, 
have a neutral element, and have an inverse.

In our case, the set of nodes N in the labeled union-find data structure corresponds to the set 
of n-sequence terms, and the set of labels L corresponds to the set of integer polynomials that 
represent the differences in starting indices between n-sequence terms. Integer polynomials 
satisfy the group axioms: composition is integer addition (comp(x, y) = x + y), the neutral 
element is 0 (∀x. x + 0 = 0 + x = x), and the inverse function is negation (inv(x) = −x). 
Since the labels respect the group axioms, we ensure that all paths are compressed in our 
labeled union-find data structure.

Example 1  Given the formulas F1 : s1 = relocate (s, k1), F2 : s2 = relocate (s, k2), and 
F3 : s3 = relocate (s2, k3), and assuming that s is chosen as the representative:

	● F1: An edge labeled with f s − f s1  is added from s1 to s.
	● F2: An edge labeled with f s − f s2  is added from s2 to s.
	● F3: Given that the distance difference between s3 and s2 is f s2 − f s3 , and that the label 

on the edge from s2 to s is f s − f s2 , then an edge labeled with f s − f s3  is added from 
s3 to s.
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Concretely, the implementation is as follows: each n-sequence is either a represen-
tative or a non-representative of a =reloc  class. Each representative s is associated to a 
map {k1 �→ s1, k2 �→ s2, . . .}, where s1, s2, . . . are non-representative n-sequences in the 
=reloc  class of s, and k1, k2, . . . are the labels on the edges from s1, s2, . . . to s, respec-
tively. Each non-representative si is associated with a pair (s, ki), where s is the representa-
tive of its =reloc  class and ki is the label of the edge from si to s.

The representative of a =reloc  class is initially chosen arbitrarily and remains unchanged 
when adding new elements to the =reloc  class, unless an element from another class is 
added, in which case the representative of the larger class (i.e., the one with more elements) 
is chosen as the representative of the merged class.

In addition to path compression, we maintain normalized edge labels. This is possible 
because Colibri2 associates a normalized polynomial with each arithmetic term. This makes 
equality detection straightforward. For example, given a representative s associated with a 
map {k1 �→ s1, k2 �→ s2}, if a new non-representative s3 is added with the label k3 such 
that k1 = k3, then we can deduce s1 = s3. Furthermore, for each representative s, we add 
0 �→ s to its map of non-representatives, ensuring that if a new term s0 is added with the 
label 0, we can directly deduce s0 = s.

This implementation also simplifies constraint propagation: retrieving all members of a 
class is as simple as accessing the map of the class’s representative. If a constraint is propa-
gated to a representative, the map of non-representatives can be accessed directly. If it is 
propagated to a non-representative, the constraint must first be applied to the representative, 
then propagated from the representative to the other non-representatives.

To improve efficiency, we restrict constraint propagation to occur only from non-rep-
resentatives to representatives. This ensures that all constraints on a given n-sequence are 
always propagated to the representative of its =reloc  class. When two classes are merged, 
and a new representative is chosen, the constraints from the other (now former) representa-
tive are also propagated to the new one. This approach effectively computes the reduced 
product of the constraints for all members of a =reloc  class by only propagating to the 
representative, instead of redundantly propagating constraints to every member of the class.

7.2  Simplification rewrites

To ensure that Assumption 1 is maintained, we implemented a callback system. Callbacks 
are functions that are executed whenever a specific event occurs. In the case of Assumption 
1, the callbacks correspond to simplifications, and the events defined for a given n-sequence 
s are one of the following:

	● s is empty: this event occurs when the proposition l s < f s is determined to be true.
	● s is not flat: this event occurs when s is determined to be equal to any normal form of 

the shape _::_.

Whenever one of these two events occurs, the corresponding simplification is applied. When 
a simplification is applied to a given n-sequence s, it is also applied to all the n-sequences 
that are in its =reloc  class. For instance, when an n-sequence s is determined to be empty, it 
is removed from all the n-sequence normal forms in which it occurs. Similarly, all elements 
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of its =reloc  class are also removed from all the n-sequence normal forms in which they 
appear. This ensures that Assumption 1 is consistently upheld.

7.3  Reasoning

Most of the inference rules of the reasoning are applied as soon as possible. When a 
rule is applied, it is necessary to first determine if a decision needs to be made to know 
which of the inference rule’s consequences should be applied. For instance, when the term 
s1 = relocate (s2, i) is encountered, if it is known that i = f s2  is true, then s1 = s2 is 
propagated immediately. Otherwise, a decision is registered on whether i = f s2  is true to 
determine which of the rule’s consequences should be propagated.

This applies to the rules Const-Bounds, Reloc-Bounds, NS-Slice, Reloc-Inv, NS-Concat, 
NS-Update, NS-Split, and NS-Comp-Reloc in Figure 1, as well as all the rules in Figures 
2 and 3.

In contrast, the NS-Exten rule is applied only during the last effort phase. This means 
that it is applied to all pairs of n-sequences that are not known to be equal, but only after all 
other rules, their propagations and decisions, have been executed. When the NS-Exten rule 
is applied, it can introduce new propagations and decisions, which in turn may introduce 
further ones, and so forth. In such cases, the NS-Exten rule is reapplied only after all newly 
introduced propagations and decisions are completed. If no new propagations or decisions 
are introduced, the NS-Exten rule is not reapplied.

7.4  Support for the Seq theory

To ensure compatibility with the Seq theory of cvc5 and Z3, we added support for a subset 
of their versions of the Seq theory. This subset consists of the common sequence operations 
that are used to represent array-like data structures in programming languages. These opera-
tions include: seq.unit, seq.len, seq.nth, seq.update, seq.extract, and seq.++.

To support these operations in our solver, we simply internally translate them into opera-
tions from the NSeq theory as follows:

	● Sequence terms: n-sequence terms where the first index is 0 and the last index is greater 
than or equal to −1.

	● seq.empty: We added the nseq.empty symbol, representing a constant empty NSeq 
term where the first index is 0 and the last index is −1.

	● seq.unit(v): const (0, 0, v)
	● seq.len(s): l s − f s + 1
	● seq.nth(s, i): get (s, i)
	● seq.update(s1, i, s2): 

	
let (r, relocate (s2, i), ite ( f s1 ≤ i ≤ l s1 ∧ l s1 < l r,

update (s1, slice (r, i, l s1 )), update (s1, r)))

	● seq.extract(s, i, j): 

	 ite (i < f s ∨ l s < i ∨ j ≤ 0, ϵ, slice (s, i, min( l s, i + j − 1)))
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	● seq.++(s1, s2, s3, . . . , sn): 

	

let (c1, concat (s1, relocate (s2, l s1 + 1)),
let (c2, concat (c1, relocate (s3, l c1 + 1)),

. . .
concat (cn−2, relocate (sn, l cn−2 + 1))))

8  Experimental evaluation

In this section, we present experimental results of our implementations described in Section 
7, of the calculi described in Section 5. These experiments were conducted on quantifier-free 
benchmarks that use only the Seq and NSeq theories with the theory of uninterpreted func-
tions. The benchmarks are a subset of those used by Sheng et al. [17], which were originally 
translated into the Seq theory from the QF_AX SMT-LIB benchmarks [4]. We also translated 
the QF_AX benchmarks into the NSeq theory to test our native calculi and compare them 
with the encoding of the NSeq theory using the Seq and ADT theories described in Section 4.

Our implementations in Colibri21 of the NS-BASE and NS-EXT calculi can be used with 
the following commands:

	● NS-BASE: colibri2 --nseq-base
	● NS-EXT: colibri2 --nseq-ext

For comparison, we used cvc5 (version 1.2.0) and Z3 (version 4.13.3) as reference solvers. 
We tested three configurations of cvc5, each using a different strategy for handling sequence 
operations:

	● cvc5: cvc5
	● cvc5-eager: cvc5 --seq-arrays=eager
	● cvc5-lazy: cvc5 --seq-arrays=lazy
	● z3: z3

Figures 4 and 5 illustrate the number of goals solved over accumulated time for Seq and NSeq 
benchmarks, respectively. Detailed statistics including number of goals solved, timeouts, errors, 
and runtime metrics (average, median, and total solving time) are shown in Tables 2 to 5.

8.1  Translated n-sequence benchmarks

Similarly to what was done in [17], we translated QF_AX benchmarks into the NSeq theory by 
replacing the sort of indices with integers, the sort of arrays with the sort of n-sequences, and the 
array operations select  and store  with the n-sequence operations get  and set , respectively.

To compare the native calculi approach with the encoding approach described in Sec-
tion 4, we also created a version of the benchmarks in which, in addition to translating the 

1 Available at: ​h​t​t​p​s​:​​​/​​/​g​i​​t​.​f​r​a​m​​a​​-​c​​.​c​​o​m​/​​​p​u​b​/​c​​o​l​i​b​r​​​​i​​c​s​​/​-​​/​t​r​e​e​​/​a​c​t​a​_​i​n​f​o​r​​m​a​t​i​c​a​_​2​0​2​4 (commit SHA: 
8d654690eb5c08643a87f0e41334f66311186e40)
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benchmarks, we added the definitions of the NSeq theory operations using the operations of 
the Seq and ADT theories.

Figure 4 shows that NS-EXT performs better overall on unsatisfiable benchmarks, solv-
ing more goals faster than all other solvers. While NS-BASE performs better than both cvc5 
and z3, though it trails behind NS-EXT, cvc5-eager and cvc5-lazy.

Table 2 confirms that NS-EXT achieves the best overall result (74 goals solved) with one 
of the lowest average runtimes (0.543s). Notably, NS-BASE solves slightly more problems 
than cvc5 (45 vs. 44) with a significantly lower average runtime (0.138 vs. 1.570).

Table 2  Statistics on the performance of the solvers on quantifier-free unsatisfiable NSeq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 45 115 4 0 0.408 0.138 18.346
NS-EXT 74 90 0 0 0.543 0.102 40.159
cvc5 44 120 0 0 1.570 1.279 69.064
cvc5-eager 67 97 0 0 0.832 0.139 55.711
cvc5-lazy 69 95 0 0 0.886 0.156 61.156
z3 22 26 0 0 1.949 1.399 42.889

Fig. 5  Number of solved goals by accumulated time in seconds on quantifier-free Seq benchmarks trans-
lated from the QF_AX SMT-LIB benchmarks

 

Fig. 4  Number of solved goals by accumulated time in seconds on quantifier-free NSeq benchmarks 
translated from the QF_AX SMT-LIB benchmarks
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Since these benchmarks originate from array benchmarks and contain many get  and set  
operations which, as shown in the rules in Figure 2, require multiple decisions and introduce n
-sequence normal forms with small n-sequence components, the solver requires significant com-
putation time and does not scale very well on these benchmarks. Reasoning over such problems 
would work better with clause learning which would allow a better handling of decisions.

Regarding satisfiable goals, only Colibri2 managed to determine Satisfiability within the time 
limit, with NS-EXT clearly surpassing NS-BASE in both speed and the number of goals solved. 
Table 3 shows that the average runtime of NS-EXT is also better than the one of NS-BASE.

8.2  Translated sequence benchmarks

As mentioned in Section 7.4, we implemented support for the Seq theory by encoding it on 
top of the NSeq theory. To evaluate the performance of our support for the Seq theory, we 
compared it with the Seq theories of cvc5 and Z3 on Seq benchmarks, which were translated 
from QF_AX benchmarks.

The graph on the right in Figure 5 shows that on unsatisfiable goals, our NS-EXT imple-
mentation outperforms cvc5 and z3 in both time and the number of goals solved. Meanwhile, 
NS-BASE initially solves more goals than cvc5, but solves fewer overall. Additionally, 
cvc5-eager and cvc5-lazy perform better than the other solvers.

As seen in Table 4, cvc5-lazy solves the most goals and achieves a relatively low aver-
age runtime. However, NS-EXT solves nearly as many while maintaining a slightly lower 
average runtime.

In the satisfiable case, Table 5 shows that cvc5-lazy solves the most goals (177), followed 
by cvc5-eager (171), while NS-EXT solves slightly fewer (167) but with a much lower 
average time per goal (0.176s vs. 0.327s and 0.443s). These trends are reflected in Figure 
5, where the NS-EXT curve is steeper early on but levels off before reaching the maximum. 
A similar trend can be noticed with NS-BASE compared to cvc5-eager, the two curves are 
close to one another and cross each other at two points, before cvc5-eager takes over.

8.3  Discussion

In the context of program verification, performance on unsatisfiable goals is of greater 
importance, although the satisfiable cases remain valuable. Since Colibri2 constructs con-
crete models before concluding satisfiability, we aim to improve our current model genera-
tion technique for n-sequences.

For unsatisfiable goals, our solver performs competitively with state-of-the-art SMT solvers 
such as cvc5 and Z3. However, we have observed that certain goals which remain unsolved 
within a short timeout (e.g., 5 seconds) also remain unsolved even with significantly longer time-
outs. This suggests potential performance bottlenecks in our propagators for the NSeq theory.

Table 3  Statistics on the performance of the solvers on quantifier-free satisfiable NSeq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 158 229 0 0 0.344 0.184 54.382
NS-EXT 169 218 0 0 0.259 0.113 43.753
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A notable pattern visible in Figures 4 and 5 is the presence of inflection points in the 
performance curves of NS-BASE and NS-EXT. These may indicate that the solver struggles 
with specific classes of problems, warranting further investigation.

It is also worth noting that our translation from Seq to NSeq in Colibri2 often introduces 
more complex terms. Additionally, Colibri2 does not currently implement clause learning, 
which can make the search space exploration more costly compared to other SMT solvers.

9  Conclusion

In this paper, we explored the topic of reasoning over n-indexed sequences in SMT. We pro-
posed a theory for such sequences and discussed approaches for reasoning over it, whether 
by using existing theories or by adapting calculi from the theory of sequences to this theory 
and implementing the calculi in a solver. We discussed the various changes we had to bring 
to the calculi to adapt them to our theory and mentioned different implementation details that 
helped us obtain competitive performance results with state-of-the-art SMT solvers, despite 
the absence of clause learning.

Looking ahead, we plan on delving deeper into different reasoning approaches for this 
theory, exploring their respective strengths and weaknesses through benchmarking with n
-indexed sequences. We also aim to identify additional use cases, other that representing 
Ada arrays, where n-indexed sequences appear as a natural choice.

 
Appendix A. Representation of n-indexed sequences using sequences 
and algebraic data types

Table 4  Statistics on the performance of the solvers on quantifier-free unsatisfiable Seq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 45 117 2 0 0.410 0.139 18.449
NS-EXT 75 89 0 0 0.558 0.107 41.830
cvc5 43 121 0 0 1.265 0.733 54.392
cvc5-eager 78 86 0 0 0.787 0.108 61.367
cvc5-lazy 81 83 0 0 0.578 0.064 46.806
z3 9 39 0 0 0.112 0.018 1.007

Table 5  Statistics on the performance of the solvers on quantifier-free satisfiable Seq benchmarks
Solver Solved Timeout Error Unknown Avg. Time Med. Time Tot. Time
NS-BASE 154 232 1 0 0.370 0.175 56.976
NS-EXT 167 220 0 0 0.176 0.108 29.363
cvc5 171 216 0 0 0.887 0.603 151.742
cvc5-eager 165 222 0 0 0.443 0.219 73.080
cvc5-lazy 177 210 0 0 0.327 0.150 57.821
z3 85 418 0 0 1.668 1.014 141.773
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Appendix B. Proof that equivalence modulo relocation is an 
equivalence relation

In this section we prove the claim that the equivalence modulo relocation relation in an 
equivalence relation

Proof  Proposition 1: The =reloc  relation is an equivalence relation.

	● (a) Reflexivity: Given an n-sequence s, s =reloc s holds since an n-sequence is equal to 
itself, therefore equivalent (modulo relocation) to itself by definition.

	● (b) Symmetry:

Given two n-sequences s1 and s2, s1 =reloc s2 implies: l s2 = l s1 − f s1 + f s2  (1) and 
∀i : Int, f s1 ≤ i ≤ l s1 ⇒ get(s1, i) = get(s2, i − f s1 + f s2 ) (2)
From rearranging (1) we get: l s1 = l s2 − f s2 + f s1  (3)
By subtracting f s1 − f s2  from the terms of the disequality in (2) we get:
∀i : Int, f s2 ≤ i − f s1 + f s2 ≤ l s1 − f s1 + f s2 ⇒ get(s1, i) = get(s2, i 
− f s1 + f s2 ) (4)
From (2), we can replace l s1 − f s1 + f s2  with l s2  in (4), to get:
∀i : Int, f s2 ≤ i − f s1 + f s2 ≤ l s2 ⇒ get(s1, i) = get(s2, i − f s1 + f s2 ) (5)
if we introduce a variable j such that j = i − f s1 + f s2  in (5) we get:
∀j : Int, f s2 ≤ j ≤ l s2 ⇒ get(s1, j − f s2 + f s1 ) = get(s2, j) (6)
From (3) and (6), we deduce that s2 =reloc s1.

	● (c) Transitivity:

Given three n-sequences s1, s2 and s3, s1 =reloc s2 and s2 =reloc s3 imply that:
l s2 = l s1 − f s1 + f s2  (1)
∀i : Int, f s1 ≤ i ≤ l s1 ⇒ get(s1, i) = get(s2, i − f s1 + f s2 ) (2)
l s3 = l s2 − f s2 + f s3  (3)
∀i : Int, f s2 ≤ i ≤ l s2 ⇒ get(s2, i) = get(s3, i − f s2 + f s3 ) (4)
By replacing l s2  with l s1 − f s1 + f s2  in (3) we get:
l s3 = l s1 − f s1 + f s3  (5)
From (1) we get:
l s1 = l s2 + f s1 − f s2  (6)
By adding f s1 − f s2  to the terms of the disequality in (4), we get:
∀i : Int, f s1 ≤ i + f s1 − f s2 ≤ l s2 + f s1 − f s2 ⇒ get(s2, i) = get(s3, i − f s2 + 
f s3 ) (7)
From (6), we can replace l s2 + f s1 − f s2  with l s1  in (7) and get:
∀i : Int, f s1 ≤ i + f s1 − f s2 ≤ l s1 ⇒ get(s2, i) = get(s3, i − f s2 + f s3 ) (8)
By introduction a variable j, such that i = j − f s1 + f s2  and replacing i with 
j − f s1 + f s2  in (8) we get:
∀j : Int, f s1 ≤ j ≤ l s1 ⇒ get(s2, j − f s1 + f s2 ) = get(s3, j − f s1 + f s3 ) (9)
From (2) we get:
∀j : Int, f s1 ≤ j ≤ l s1 ⇒ get(s1, j) = get(s3, j − f s1 + f s3 ) (10)
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From (5) and (10), we deduce that s1 =reloc s3.From (a), (b) and (c), we deduce that 
=reloc  is a reflexive, symmetric and transitive relation, it is therefore an equivalence 
relation. � □

Author contributions  Hichem Rami Ait El Hara wrote the manuscript with support from François Bobot 
and Guillaume Bury. Hichem Rami Ait El Hara conceived the original idea. Hichem Rami Ait El Hara and 
François Bobot participated in the implementation of the tool. Hichem Rami Ait El Hara carried out the 
experiments with inputs from François Bobot and Guillaume Bury. François Bobot and Guillaume Bury 
supervised the project.

Funding  Open access funding provided by Université Paris-Saclay.

Data availability  No datasets were generated or analysed during the current study.

Declarations

Competing interests  The authors declare no competing interests.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1.	 Ait-El-Hara, H.R., Bobot, F., Bury, G.: An SMT Theory for n-Indexed Sequences. In: Reger, G., Zohar, 
Y. (eds.) Proceedings of the 22nd International Workshop on Satisfiability Modulo Theories. CEUR 
Workshop Proceedings, vol. 3725, pp. 64–74. CEUR, Montreal, Canada (2024). ​h​t​t​p​s​:​/​/​c​e​u​r​-​w​s​.​o​r​g​/​V​o​
l​-​3​7​2​5​/​#​s​h​o​r​t​1​3​​​​​​​

2.	 Ait-El-Hara, H.R., Bobot, F., Bury, G.: On SMT Theory Design: The Case of Sequences. In: Kalpa 
Publications in Computing, vol. 18, pp. 14–29. EasyChair, Balaclava, Mauritius (2024). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​2​9​0​0​7​/​7​5​t​l​​​​​. ISSN: 2515-1762

3.	 Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A., Mohamed, 
M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: 
cvc5: A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, 
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, 
Munich, Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243, 
pp. 415–442. Springer, Munich, Germany (2022). https://doi.org/10.1007/978-3-030-99524-9_24

4.	 Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. 
(eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, 
UK) (2010)

5.	 Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware heuristics. In: Proceed-
ings of the 17th Conference on Formal Methods in Computer-Aided Design. FMCAD ’17, pp. 55–59. 
FMCAD Inc, Austin, Texas (2017)

6.	 Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB Format for Sequences and Regular 
Expressions. Strings (2012)

7.	 Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: CDSAT for Nondisjoint Theories with Shared 
Predicates: Arrays With Abstract Length. Satisfiability Modulo Theories workshop, CEUR Workshop 
Proceedings 3185 (2022). Accessed 2024-02-23

1 3

33  Page 24 of 25

http://creativecommons.org/licenses/by/4.0/
https://ceur-ws.org/Vol-3725/#short13
https://ceur-ws.org/Vol-3725/#short13
https://doi.org/10.29007/75tl
https://doi.org/10.29007/75tl
https://doi.org/10.1007/978-3-030-99524-9_24


Reasoning over n-indexed sequences in SMT

8.	 Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In: Emerson, E.A., Namjoshi, 
K.S. (eds.) Verification, Model Checking, and Abstract Interpretation, pp. 427–442. Springer, Berlin, 
Heidelberg (2006). https://doi.org/10.1007/11609773_28

9.	 Christ, J., Hoenicke, J.: Weakly Equivalent Arrays. In: Lutz, C., Ranise, S. (eds.) Frontiers of Combin-
ing Systems. Lecture Notes in Computer Science, pp. 119–134. Springer, Cham (2015). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​0​0​7​/​9​7​8​-​3​-​3​1​9​-​2​4​2​4​6​-​0​_​8​​​​​​​

10.	 Furia, C.A.: What’s Decidable about Sequences? In: Bouajjani, A., Chin, W.-N. (eds.) Automated Tech-
nology for Verification and Analysis, pp. 128–142. Springer, Berlin, Heidelberg (2010). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​0​0​7​/​9​7​8​-​3​-​6​4​2​-​1​5​6​4​3​-​4​_​1​1​​​​​​​

11.	 Ghilardi, S., Gianola, A., Kapur, D., Naso, C.: Interpolation Results for Arrays with Length and Max-
Diff. ACM Trans. Comput. Log. 24(4), 28–12833 (2023). https://doi.org/10.1145/3587161

12.	 Jeż, A., Lin, A.W., Markgraf, O., Rümmer, P.: Decision Procedures for Sequence Theories. In: Enea, C., 
Lal, A. (eds.) Computer Aided Verification. Lecture Notes in Computer Science, pp. 18–40. Springer, 
Cham (2023). https://doi.org/10.1007/978-3-031-37703-7_2

13.	 Lesbre, D., Lemerre, M., Ait-El-Hara, H.R., Bobot, F.: Relational abstractions based on labeled union-
find. Proc. ACM Program. Lang. 9(PLDI) (2025). https://doi.org/10.1145/3729298

14.	 Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) Theory Solver for a Theory 
of Strings and Regular Expressions. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification, pp. 
646–662. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_43

15.	 Marre, B., Bobot, F., Chihani, Z.: Real Behavior of Floating Point Numbers. In: The SMT Workshop, 
Heidelberg, Germany (2017). SMT 2017, 15th International Workshop on Satisfiability Modulo Theo-
ries. https://cea.hal.science/cea-01795760

16.	 Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and 
Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, Berlin, Heidelberg 
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

17.	 Sheng, Y., Nötzli, A., Reynolds, A., Zohar, Y., Dill, D., Grieskamp, W., Park, J., Qadeer, S., Barrett, C., 
Tinelli, C.: Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences. J. Autom. Reason. 
67(3), 32 (2023). https://doi.org/10.1007/s10817-023-09682-2

18.	 Varghese, G., Lauck, T.: Hashed and hierarchical timing wheels: Data structures for the efficient imple-
mentation of a timer facility. In: Proceedings of the Eleventh ACM Symposium on Operating Systems 
Principles, vol. 21, pp. 25–38. Association for Computing Machinery, New York, NY, USA (1987). 
https://doi.org/10.1145/37499.37504

19.	 Wang, Q., Appel, A.W.: A Solver for Arrays with Concatenation. J. Autom. Reason. 67(1), 4 (2023). 
https://doi.org/10.1007/s10817-022-09654-y

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

1 3

Page 25 of 25  33

https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-642-15643-4_11
https://doi.org/10.1007/978-3-642-15643-4_11
https://doi.org/10.1145/3587161
https://doi.org/10.1007/978-3-031-37703-7_2
https://doi.org/10.1145/3729298
https://doi.org/10.1007/978-3-319-08867-9_43
https://cea.hal.science/cea-01795760
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10817-023-09682-2
https://doi.org/10.1145/37499.37504
https://doi.org/10.1007/s10817-022-09654-y

	﻿Reasoning over n-indexed sequences in SMT
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Related work

	﻿2﻿ ﻿Notation
	﻿3﻿ ﻿The theory of ﻿￼﻿﻿-indexed sequences
	﻿﻿4﻿ ﻿Reasoning with existing theories
	﻿﻿5﻿ ﻿Porting calculi from the Seq theory to the NSeq theory
	﻿﻿5.1﻿ ﻿Common calculus
	﻿5.2﻿ ﻿The base calculus
	﻿5.3﻿ ﻿The extended calculus

	﻿6﻿ ﻿Cacluli soundness proofs
	﻿6.1﻿ ﻿Common calculus soundness
	﻿6.2﻿ ﻿NS-BASE soundness
	﻿6.3﻿ ﻿NS-EXT soundness

	﻿﻿7﻿ ﻿Implementation
	﻿7.1﻿ ﻿Equivalence modulo relocation
	﻿7.1.1﻿ ﻿Equivalence modulo relocation with undirected graphs
	﻿7.1.2﻿ ﻿Equivalence modulo relocation with a labeled union-find data structure


	﻿7.2﻿ ﻿Simplification rewrites
	﻿7.3﻿ ﻿Reasoning
	﻿﻿7.4﻿ ﻿Support for the Seq theory
	﻿8﻿ ﻿Experimental evaluation
	﻿8.1﻿ ﻿Translated ﻿￼﻿﻿-sequence benchmarks
	﻿8.2﻿ ﻿Translated sequence benchmarks
	﻿8.3﻿ ﻿Discussion

	﻿9﻿ ﻿Conclusion
	﻿﻿Appendix A. Representation of ﻿n﻿-indexed sequences using sequences and algebraic data types
	﻿﻿Appendix B. Proof that equivalence modulo relocation is an equivalence relation
	﻿References


