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Abstract. SMT solvers are essential for applications in artificial intelli-
gence, software verification, and optimisation. However, no single solver
excels across all formula types, and different applications may require
the use of different solvers. While the SMT-LIB language enables multi-
solver support, it also incurs heavy I/O overhead. To address this, we
introduce SMT.ML, an SMT-solver frontend for OCaml that simplifies in-
tegration with various solvers through a consistent interface. Its paramet-
ric encoding facilitates the easy addition of new solver backends, while
optimisations like formula simplification, result caching, and detailed er-
ror feedback enhance performance and usability. Furthermore, SMT.ML
is the only SMT frontend that includes a simplification-management en-
gine for streamlining the integration of new formula simplifications and
the verification of their correctness. Our evaluation demonstrates that
SMT.ML’s results are consistent with those of its backend solvers and
that its optimisations are highly effective on formulas generated from
the symbolic execution of an extensive program-analysis benchmark.

Keywords: SMT Solvers - Symbolic Execution - OCaml - SMT-LIB

1 Introduction

Since their emergence in the early 2000s, SMT solvers have become increasingly
relevant and are now fundamental to numerous applications in modern life. They
are applied in various scientific and industrial domains, ranging from planning
problems in artificial intelligence [15] to software verification and test generation
in software engineering [7,16,30,41], and even the optimisation of production
chains in operations research [11].

While there are now multiple industry-strength SMT solvers for one to choose
from, none of them is perfect for all applications. For example, recent SMT-
COMP [14] results reveal considerable differences in solver ranking across vari-
ous theories. Hence, even within a single application, there may be benefits to
using multiple solvers for tackling different types of formulas. However, switching
between solvers often entails costly and error-prone integration work.
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A common approach to interfacing with multiple solvers is to use SMT-
LIB [9], a solver-agnostic textual format supported by almost all leading SMT
solvers. In this approach, the given formula is serialised into an SMT-LIB formula
and then the generated file is passed to the most appropriate solver for analysis.
This textual interface, however, introduces substantial 1/O overhead, making
it impractical for performance-critical applications such as symbolic execution,
program analysis, or synthesis engines. For efliciency, it is therefore essential for
solvers to be integrated into the codebase as external libraries, linked directly via
their native APIs. Unfortunately, these APIs differ widely in, for example, nam-
ing conventions, data representations, and type safety, making them challenging
to understand and use in a uniform way.

While shared APIs for multiple solvers exist for some languages, such as
Python and C++, they lack mechanisms to verify the correctness of any internal
simplifications and do not address performance bottlenecks caused by repeated
or redundant solver queries. Moreover, the OCaml ecosystem, which is home to
a number of program-analysis and verification tools, has, until now, lacked a
unified frontend for integrating multiple SMT solvers efficiently and safely.

To address these challenges, we introduce SMT.ML, a new SMT solver fron-
tend for OCaml. SMT.ML simplifies the integration of OCaml programs with
multiple SMT solvers by providing a consistent SMT-LIB-compatible language
connected to five state-of-the-art solver backends: Alt-Ergo [22], Bitwuzla [50],
Colibri2 [12], cveb [6], and Z3 [26]. With SMT.ML, OCaml developers do not need
to understand any intricate detail of the API of these solvers to use them; they
only have to create an SMT.ML formula and select the desired solver backend.
Importantly, as part of the SMT.ML development effort, we created, for the first
time, OCaml APIs for two SMT solvers: Colibri2 [12] and cvcb [6].

The key novelties of SMT.ML when compared to other SMT frontends are:

1. a new parametric encoding that relies on a common solver API to translate
SMT.ML formulas into the native logic of each backend solver (§3);

2. a simplification-management system that allows developers to specify simpli-
fication rules using a new declarative domain-specific language (DSL), from
which both their OCaml implementations and corresponding Lean [49] proof
skeletons are automatically generated (§4.1);

3. a caching system for satisfiability results, which normalises SMT queries to
maximise cache hits and avoid redundant computation (§4.2).

To the best of our knowledge, SMT.ML is the first SMT frontend to have
any of these features. The parametric encoding streamlines addition of new
solvers to SMT.ML by requiring the developer to implement only a small, uni-
form set of functions, avoiding code duplication. The simplification management
and caching systems are both solver-agnostic and together lead to a substantial
increase in SMT performance on realistic program-analysis workloads. In addi-
tion, the former enables systematic verification of simplification correctness and
provides a framework for extending the system with new verified simplifications.

We perform a comprehensive evaluation of SMT.ML on approximately 206K
formulas from the official SMT-LIB benchmark [56] and 2.3M formulas obtained
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Fig. 1: Overview: Architecture of SMT.ML.

from symbolically executing the Test-Comp 2023 dataset [10] (§5). The results
show that the behaviour of SMT.ML is fully consistent with the behaviour of the
supported solvers, that the overhead of SMT.ML is negligible w.r.t. overall solving
time (below 1% on average), and that the simplifications and caching of SMT.ML
yield up to a 1.6x speed-up on formulas produced by symbolic execution.

We have made SMT.ML fully accessible to the OCaml and research commu-
nities. It is actively used in various research projects across both academia [47]
and industry [2], and has been integrated into OPAM [63], the OCaml package
manager, simplifying its incorporation into future OCaml projects.

2 Architecture

Figure 1 presents an overview of the architecture of SMT.ML. While SMT.ML
was primarily conceived to be used as a library within an OCaml application,
it could, in principle, also be used as a standalone tool. Therefore, it accepts
inputs either in the form of native SMT.ML formulas or SMT-LIB [9] textual
formulas. In the case of the latter, the SMT-LIB formula is first parsed by the
Parser module (Step 0) and converted into an SMT.ML native formula. Given a
native formula, SMT.ML performs the following steps:

— Simplifier module (Step 1): This module applies a range of transformations
to the given formula to reduce its complexity while preserving its original
semantics. For instance, it applies the following algebraic identity to simplify
bit-vector formulas:

concat(extract(z, h,m), extract(z,m,l)) — extract(z,h,l)

where the concat operator concatenates the two given bit-vectors and the
extract operator returns the slice of the given bit-vector corresponding to
the specified bounds, padding with additional zeros if necessary.
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— Cache module (Step 2): This module normalises the given formula, checks if
its satisfiability was already computed, and if so, returns the stored result.
As part of the normalisation process, we rename symbolic variables in a
standardised way to maximise cache hits.

— Encoding module (Step 3): This module encodes SMT.ML expressions using
the native OCaml bindings of the selected solver. It is parametric on a Core
Solver API, simplifying the addition of new solver backends.

The simplifier module is also responsible for managing simplification rules, both
converting them into the executable OCaml code that applies them and gener-
ating the Lean proof skeletons that, once completed, establish their correctness.

2.1 Why use SMT.ML?

In this section, we discuss in more detail the three main advantages that SMT.ML
introduces for developers working with SMT solvers in OCaml.

Solver Independence. A key advantage of SMT.ML is its ability to interface with
multiple SMT solvers through a single solver-independent frontend. In doing so,
SMT.ML eliminates the need for developers to tailor their code to a specific solver
APT and lets them transparently switch between solvers, selecting whichever one
is best for a given problem. This decision can even be made at runtime, allowing
for the application of customised portfolio strategies [62].

Performance Optimisations. Interactions with SMT solvers are computationally
expensive and can become a bottleneck in client applications. For instance, these
interactions are known to be one of the main performance degradation factors
in symbolic execution tools [47]. Our evaluation, described in detail in §5, shows
that SMT.ML, with its solver-agnostic formula simplifications and caching of
satisfiability results, can introduce substantial performance improvements when
compared to using any single SMT solver directly.

Usability. OCaml bindings for SMT solvers often provide few type safety guaran-
tees, with many using one generic OCaml type to represent SMT expressions de-
noting different types of values, such as integers or strings. For instance, OCaml
bindings for Z3 [26] use a single type for all general expressions regardless of
their underlying sort. This leads to ill-typed expressions not being detected at

Listing 1 Type violation of a function declaration using Z3 OCaml bindings.

(* Function Declaration: foo : int -> int *)
let foo = FuncDecl.mk_func_decl_s ctx "foo"” [ int_sort ] int_sort in

let str_sort = Seq.mk_string_sort ctx in
let value = Symbol.mk_string ctx "value"” in
let str_const = Expr.mk_const ctx value str_sort in

let foo_app = Expr.mk_app ctx foo [ str_const ] in
(x foo(value) + 2 >= 2 %)
let formula = Arithmetic.mk_ge ctx (Arithmetic.mk_add ctx [ foo_app ; two ]) two

QOWooNOU A~ WN
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TyPES
t ::= Tunit | Tbool | Tint | Treal | Tbitv 4nt | Tfp int | Tstr | Tregexp | Tapp | Tlist

VALUES
U € Vyme 1:=unit | true | false | int | real | i8 | ¢32 | i64 | f32 | f64 | str | regexp | list v

EXPRESSIONS
e € Esmt := v | ¢ | unop(op, ¢, e) | binop(op, ¢, €, e) | triop(op, ¢, e, e, €)
| relop(op, t, e, ¢) | cvtop(op, t, €) | naryop(op, ¢, list e) | list e
COMMANDS
¢ € Csmt ::= declare(z;) | assert e | check_sat (list e) | get_model
| get value e | pop int | push int | reset | exit

Fig.2: The syntax of SMT.ML.

compile-time leading to hard-to-debug runtime errors. Listing 1 illustrates this
issue by applying an uninterpreted function that expects an integer argument
(line 2) to a string constant (line 10), resulting in a runtime error saying that
the expected and the actual argument types do not match. In contrast, SMT.ML
expressions are well-typed by construction, avoiding this class of bugs and pro-
moting code correctness and reliability in the development process.

2.2 Syntax of SMT.ML

The syntax of SMT.ML is presented in Figure 2. There are two main syntac-
tic categories: expressions, which denote values, and commands, which repre-
sent instructions given to the solver. SMT.ML currently supports the theories of
quantifier-free linear integer and real arithmetic (QF_LIA and QF_LRA), bit-vectors
(QF_BV), floating-point arithmetic (QF_FP), and strings (QF_S). These are the the-
ories most commonly required for software verification and analysis tasks [5, 17],
which is the main application of SMT.ML. However, SMT.ML has a modular and
extensible architecture, making it easy to add support for new theories.

Values. SMT.ML values, v € Vg, include the unit value, booleans (true and
false), integers, reals, machine integers (8, 32 and 64-bit), IEEE 754 floating-
point numbers (32 and 64-bit) [38], strings, regular expressions, and lists.

Ezxpressions. Expressions, e € Egpt, consist of: values; typed symbolic vari-
ables x;, where x denotes the variable identifier and ¢ its type; and operators,
which can be unary (unop, such as logical negation), binary (binop, such as
addition), ternary (binop, such as bit-vector slicing), n-ary (naryop, such as list
concatenation, relational (relop, such as comparisons), or conversion-related
(cvtop, such as casting from an integer to a string). Importantly, expression
constructors enforce well-typedness by explicitly carrying the expression type.

Commands. SMT.ML provides the developer with a set of commands for inter-
acting with SMT solvers. In particular, one can: declare a symbolic variable x
of a given type t; assert that a given Boolean expression (i.e., formula) holds;
check satisfiability of the current solver state additionally assuming a given list
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of formulas; get a model for the last satisfiability check; get a model for a given
expression in the context of the last satisfiability check; introduce/remove a
number of assertion levels; and reset/terminate the interaction with the solver.

3 Encoding

The Encoding Module is the core component of SMT.ML that is responsible for
translating native SMT.ML expressions and commands into the expressions and
commands of the solver backends. Instead of having a separate encoding process
for each backend, we identify a set of fundamental functionalities required for
solver interaction and bring them together to form a parametric Core Solver API,
which we then use to define a solver-independent encoding. For a solver to be
integrated into SMT.ML, all that it needs to do is: support integration with
OCaml via native bindings; implement our Core Solver API as a wrapper around
these bindings; and plug this implementation into SMT.ML. This parametric
approach, which is illustrated in Figure 3, substantially streamlines the addition
of new solver backends to SMT.ML and avoids code duplication.

Importantly, extending a given solver with the wrapper code that implements
the Core Solver API is significantly easier than implementing a solver-specific
encoding from scratch. In particular, as nearly all required functions are typically
present in native solver APIs, implementing them only amounts to mapping their
names to those expected by the Core Solver API.

Solver-Independent API. The Core Solver API, denoted by S, encompasses all
functions on solver values, expressions, and commands on which the encoding
of SMT.ML expressions and commands depends. These functions can be divided
into the following four main categories:

— Values: these functions are responsible for mapping SMT.ML primitive values,
v € Vgmt, into values from the corresponding target solver;

— Operators: these functions map SMT.ML operators to the corresponding
solver operators: for example, solver wrappers are expected to implement
the addition operator, which, when given two solver expressions, returns a
target solver expression representing their sum;

©-®

(declare-const x Int)

(assert (> x 5)) —> - ’
(check-sat) :
Encoding

module
Solver SMT
Wrappers Solvers

Fig. 3: The parametric Encoding module of SMT.ML.
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VALUES SYMBOLS UNARY OPERATORS
Swal(v) = S.symbol(s) = s’ Ts(e) = te S.unop(uop, te) = €'
Ts(v) = Ts(s) =s' Ts(uop e) =€
N-ARY OPERATORS
Ts(er) =, [ Snaryop(nop, e, ..., €i]) = ¢
Ts(nop [e1,..., en]) =€

Fig. 4: Parametric translation rules for SMT.ML (excerpt).

— Commands: these functions map SMT.ML commands, ¢ € Cgp¢, into com-
mands that manipulate and interact with the target solver; and

— Lifting: these functions map solver values back to SMT.ML values, and are
essential when performing model extraction, as they allow models to be
constructed using native SMT.ML values.

Parametric Translation. Using the API described above, we implement a generic
translation from SMT.ML constructs to the corresponding solver-specific con-
structs. Expression translation is formalised as a function Ts : Egpy — S.Expr
that receives an SMT.ML expression e € &£y, and generates a target solver ex-
pression te € S.Expr. An excerpt of the translation rules is shown in Figure 4.

Values v and symbols s are translated into their counterparts in the tar-
get solver S, using the functions S.val(v) and S.symbol(s), respectively. Unary
operators, uop e, are translated by applying the solver’s unary operator to the
translated argument using the Core Solver API function S.unop(uop,te), which
produces the solver expression denoting uop applied to te. The translation pro-
ceeds similarly for all other kinds of operators.

SMT.ML supports five backend solvers: Alt-Ergo, Bitwuzla, Colibri2, cvcb,
and Z3. For each of these solvers we have implemented the Core Solver APIL.
Further, for Colibri2 we needed to implement a user-facing API that allows for
solver interaction. Finally, for cveb we had to implement OCaml bindings from
scratch [44], as it originally had none. In this way, we allow for cvcb to be natively
integrated not only into SMT.ML but also into any other OCaml-based tool.

4 Backend-independent Optimisations

The usefulness of SMT.ML extends beyond its capability to interact with mul-
tiple SMT solvers through a unified syntax. A significant aspect of its design is
the inclusion of backend-independent optimisations that enhance performance
when checking satisfiability. Here, we discuss the two most important such opti-
misations: expression simplifications (§4.1) and caching (§4.2).

4.1 Expression Simplifications

In applications that interact with SMT solvers, the size and complexity of the
problem at hand can significantly affect solver efficiency, making performance
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the primary bottleneck [66]. To address this, SMT.ML tries to reduce expression
complexity by applying a set of semantics-preserving simplifications before these
expressions are passed to a solver. Currently, SMT.ML comes with 42 simplifi-
cation rules, spanning the theories of bit-vectors (11 rules), strings (3 rules),
boolean (2 rules), and 26 generic rules that applicable to multiple theories.
Importantly, instead of hardcoding these simplifications directly into the
OCaml codebase, we design a simple domain-specific language (DSL) that en-
ables their declarative specification. This allows users of SMT.ML to easily ex-
amine, add, or remove simplifications by need. From these specifications, we
automatically generate the corresponding OCaml implementations and, if appli-
cable, Lean [49] proof skeletons, allowing users to formally prove simplification
correctness by hand, thereby reducing the trusted computing base of SMT.ML.
To our knowledge, SMT.ML is the first SMT frontend to adopt this approach.

Simplification management. SMT.ML simplification rules, r € R, are of the form
e1 = ez when ¢, meaning that if the boolean expression e; holds, then the
expression e; can be rewritten to es. For instance, consider the simplification rule

Extract(z,h,l) =z when (I >0Ah<|z|ARh—1+1=|z|) (1)

where Extract is an SMT.ML operator that returns the slice of a given bit-
vector x from bit [ to bit h inclusive, padding with zeros if the slice falls outside x.
This rule says that Extract(z, h,[) can be rewritten to  when [ is non-negative,
h is within the bounds of x and h — [ 4+ 1 equals the size of x. From this rule,
SMT.ML automatically generates the OCaml code that implements it (Fig. 5,
left), as well as the corresponding Lean proof skeleton (Fig. 5, right).

let simplify_triop ty op htel hte2 hte3 =
match op, htel, hte2, hte3 with
| ... (* other simplification cases *) {h 1 : Int}
| Extract, bv, val (Int h), Val (Int 1) (n : BitVec w)

1 1 lemma simplification_triop_000004
2 2
3 3
4 4
5 when 1 >= 0 5 (ho : 1 >=0)
6 6
7 7
8 8

{w : Nat}

and h < Ty.size (ty bv) (h1 : h <w)
and h - 1 + 1 = Ty.size (ty bv) (h2 : (w: Int) =h-1+1):
-> bv BitVec.extractlsb h 1 n =n := by ...

Fig. 5: Example: generated OCaml code (left) and Lean proof skeleton (right).

Simplification application. At runtime, SMT.ML takes the formulas that are to be
checked for satisfiability and, for each such formula, keeps looping over the sim-
plification rules, applying those whose constraints are satisfied until no further
rules can be applied; this process is illustrated in Algorithm 1. We note that it is
up to the writer of the simplifications to ensure that their collective application
does not result in infinite loops, such as e — € —2 e, where e is the original
expression, ¢’ the simplified expression, and r; and 75 two simplification rules.

To apply a simplification rule e; = e» when ¢ to a given expression e in
execution context e}, SMT.ML proceeds as follows:

1. find a substitution 6 such that 0(e;) = e;
2. if successful, check that e’ = 6(eyr);
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Algorithm 1 Expression simplification algorithm.

1: procedure SIMPLIFY (e)
2: e +e

3: for all » € Rules do

4: | e «apply rtoe

5: if ¢/ # e then

6:  return SIMPLIFY(€')
7 else

8:

| returne’

3. if successful, replace e with 0(ez).

For instance, in execution context m = |z| = 2, applying the simplification from
Equation 1 to the expression extract(concat(y, z), |y| + 2,0) yields the expres-
sion concat(y, z) with substitution = [z — concat(y,z),l — 0,h — |y| + 2]

Lean correctness proofs. We generate Lean proof skeletons for 31 out of the 42
simplifications and provide the corresponding proofs. As all of our simplifications
describe basic properties of the underlying datatypes, their proofs are very sim-
ple and highly automated, relying on the comprehensive mathematical library
of Lean. The remaining 11 simplifications are purely definitional, in that they
describe the behaviour of SMT.ML operators on concrete inputs in terms of the
corresponding OCaml operators. One such simplification, for example, is:

Length(l) = List.length [ when concrete(]) (2)

which declares that the SMT.ML Length operator coincides with the OCaml
List.length operator. Note that this simplification uses the concrete(z) pred-
icate in the when clause, which holds if and only if x is concrete.

4.2 Caching

Caching of intermediate satisfiability results is a standard technique used in
SMT solvers and solver clients to improve performance [53,57]. However, it is
not common for identical formulas to be queried multiple times, even in ap-
plications that make an intensive use of SMT solvers. To address this, formula
caching systems [64] typically implement normalisation strategies [36] with the
goal of maximising cache hits. SMT.ML comes with its own formula caching sys-
tem equipped with a normalisation procedure that performs:

— Standardisation of associative operators: a standard order is imposed on
expressions that include such operators. For instance, considering the dis-
junction operator, V, we have that (xVy)Vz =z V (y V z). In SMT.ML,
expressions that include chained associative operators are always rewritten
to ensure that the leftmost operations are performed first.

— Variable renaming: variables are renamed to ensure structurally identical
formulas with different variable names are considered equal.
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In addition to minimising the number of queries, one can also enhance the
performance of solver clients by reducing the number of expressions created at
runtime. In fact, solver clients often generate a large number of expressions,
frequently with repeated elements. As the number of queries grows memory con-
sumption increases, impacting client performance; a prime example of this are
symbolic execution enginges [18]. The standard approach to reducing the mem-
ory impact of such systems is hash-consing [29], a technique that ensures that
no two physical copies of the same expression are ever created by storing ex-
pressions in a hash table. SMT.ML includes a hash-consing module that prevents
duplication of identical expressions. To this end, whenever an SMT.ML expres-
sion constructor is called, it checks whether the expression already exists, and,
if it does, returns the previously stored expression.

Listing 2 illustrates this process for the Or constructor. We define the mk_or
hash-consing constructor, which builds a boolean disjunction of two hash-consed
expressions. In line 3, we construct the binary expression, and in line 4, we
attempt to retrieve a previously constructed expression from the hash-consing
table. If the expression is not found, we add it to the table and return the value
constructed in line 3. One might notice that in line 3 we allocate memory to
construct an expression, only to later use an existing one retrieved from the hash-
consing table. However, as OCaml initially allocates values in the minor heap
using a bump allocator [48], this allocation incurs no cost. Additionally, OCaml
will collect the temporarily allocated values during minor garbage collection.

Listing 2 Hash-consing constructor for boolean disjunction.

1 let table = Hashtbl.create 251

2 let mk_or htel hte2 =

3 let x = Binary (Or, htel, hte2) in

4 try Hashtbl.find table x with Not_found -> Hashtbl.add table x x; x

5 Evaluation

We evaluate SMT.ML with respect to the four following questions:

— EQ1: Does SMT.ML exhibit behaviour consistent with the supported solvers?
— EQ2: How much does SMT.ML’s overhead impact overall performance?

— EQ3: How do SMT.ML’s optimisations impact its overall performance?

— EQ4: Are SMT.ML’s simplifications transparent and trustworthy?

— EQ5: How does SMT.ML compare to other SMT frontends?

All experiments were performed on a server with a 12-core Intel Xeon E5-
2620 v4 CPU and 32GB of RAM, running Ubuntu 24.04.1 LTS. We compiled
SMT.ML using the OCaml 5.3.0 compiler. For the SMT solvers, we used Alt-Ergo
v2.6.2, Bitwuzla v0.8.0, Colibri2 development version (commit 1feba887), cvch
v1.3.0, and Z3 v4.13.0. Each benchmark was run with a timeout of 60s and 10GB
memory limit. The benchmarking code, reproducibility scripts, and diagram gen-
eration scripts are all available at https://github.com/formalsec/smtml.
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5.1 Datasets

To assess the correctness (§5.2) and performance overhead (§5.3) of SMT.ML, we
used a subset of the official SMT-LIB benchmark [56]. In particular, we used ap-
proximately 206K SMT formulas that comprise the (quantifier-free) theories of:
linear integer arithmetic (QF_LIA), floating-point arithmetic (QF_FP), bit-vector
arithmetic (QF_BV), string theory (QF_S), and string theory with linear integer
arithmetic (QF_SLIA). We chose these theories as they are the ones both most
commonly used in practice [14] and well-supported by the SMT.ML backends.

To assess how the optimisations of SMT.ML impact performance (§5.4), we
used a dataset of approximately 2.3M SMT formulas generated through sym-
bolic execution of the following sub-categories from the c/ReachSafety category
of the official Test-Comp 2023 benchmark suite [10]: Arrays, Bit-vectors, Heap,
ProductLines, and Sequentialized. These categories provide a diverse set of for-
mulas commonly encountered during symbolic execution of binary code. We used
the Owi symbolic execution engine [2] as it does not implement its own formula
caching system and includes only a small set of built-in optimisations, thereby
allowing for a more trustworthy assessment of the true impact of SMT.ML.

Note that the formulas found in the SMT-LIB benchmarks by design share
few commonalities and lack redundancies by design. This is the exact opposite of
our intended use case for SMT.ML, which is integration with tools that interact
multiple times with a solver during execution and generate similar formulas in
doing so, such as symbolic execution tools. For this reason, we do not evaluate
the optimisations of SMT.ML against the SMT-LIB benchmarks.

5.2 EQ1I1: Behaviour consistency

To assess the correctness of SMT.ML, we compared the results obtained when
running SMT.ML and when running each supported solver directly on the tar-
geted SMT-LIB benchmarks. This cross-validation is facilitated by the fact that
most SMT-LIB benchmarks are annotated with their expected outcome.

Results. All results produced by SMT.ML matched those directly produced by
the solvers and were aligned with the provided expected outcomes.

Takeaway 1: The behaviour of SMT.ML is fully consistent with the behaviour
of its backend solvers.

5.3 EQ2: Performance overhead

To quantify the overhead introduced by SMT.ML, we measured the time spent
in SMT.ML versus the time spent in the backend solvers on the SMT-LIB bench-
marks. SMT.ML’s tasks include parsing SMT-LIB formulas, applying simplifi-
cations, and encoding formulas for each of the backend solver APIs. For each
theory, we used the times obtained when using the solver that performed best
on average for that theory. Table 1 reports the average time spent in SMT.ML
and in the solvers for each theory, along with the corresponding percentages.
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Table 1: Average times: SMT-LIB benchmarks: SMT.ML vs. backend solvers.

SMT.ML Backend solver check-sat

Theory
avg. (ms) (%) avg. (ms) (%)
QF_BV 33.90 0.97 3460.69 99.03
QF_FP 0.36 0.01 9794.61 99.99
QF_LIA 20.97 3.13 648.97 96.87
QF_S 0.93 0.38 238.27 99.62
QF_SLIA 0.56 0.37 155.02 99.63
Total 11.09 0.50 2215.12 99.50

Results. The obtained results show that the overhead of SMT.ML is minimal
when compared to solver runtime, staying below 1% for all theories except QF_LIA
and rising to at most 3.13%, for QF_LIA. We believe that this larger percentage
is due to the corresponding formulas being larger, and thus their parsing times.

Takeaway 2: SMT.ML introduces only negligible overhead on top of the time
spent in its respective backend solvers.

5.4 EQ3: Performance impact on symbolic execution benchmarks

We evaluated the impact of the SMT.ML backend-independent optimisations
through an ablation study using a dataset of SMT formulas generated by the Owi
symbolic execution engine [2] while executing the Test-Comp 2023 benchmark
suite [10]. We considered the following three configurations:

— Raw: no optimisations, formulas are sent directly to the backend solver.

— Simplifications: formulas are simplified before being sent to the solver.

— Simplifications and caching: simplified formulas are also cached to avoid
redundant computation.

Figure 6 summarises the cumulative runtime for each configuration across the
selected benchmark categories. We consider only cveb and Z3 as they support all
of the theories required for the dataset at hand and are also the most performant.

Results. The results indicate that, on the whole, the backend-independent op-
timisations significantly improve performance. In particular, the total results
for the considered dataset (Figure 6, top left), show that the two optimisa-
tions together yield a 1.59x speedup with Z3 and 1.54x with cvcb relative to
the Raw configuration baseline. When examining categories in isolation, we can
see, for example, that for c/ReachSafety-Arrays and c/ReachSafety-Heap sim-
plifications alone account for most of the performance improvement, whereas
for c/ReachSafety-ProductLines and c/ReachSafety-Sequentialized it is the
caching that dominantly speeds up the execution. In particular, for the latter cat-
egory, caching exhibits 1.42x and 1.31x speedups over the Simplifications only
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Fig. 6: Ablation study results by Test-Comp 2023 benchmark category.

configuration for Z3 and cvcb, respectively. These differences can be attributed
to the nature of the formulas in each category: categories with many repeated
sub-expressions benefit more from caching, whereas categories with complex but
less repetitive formulas benefit primarily from simplifications.

Takeaway 3: The backend-independent optimisations significantly improve the
performance of SMT.ML on symbolic execution benchmarks.

5.5 EQA4: Transparency and trustworthiness of simplifications

By developing a DSL for writing simplifications and a mechanism for automatic
generation of corresponding OCaml code and Lean proof skeletons, we believe
that we have provided users of SMT.ML with an easy-to-use simplification man-
agement system. When it comes to simplification correctness, on the one hand,
the definitional simplifications only connect SMT.ML operators to basic OCaml
data-structure operators in a way that if one trusts the latter, one should also
trust the former. On the other hand, the correctness of all 31 non-definitional
simplifications has been fully proven in Lean. At a higher level, we opted to
prove simplification correctness in a proof assistant rather than using SMT as
some simplifications, such as the involution of list reverse (e.g., Rev(Rev(l)) = 1),
require inductive reasoning.
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Takeaway 4: Users can easily examine and manage SMT.ML simplifications. All
of these simplifications are trustworthy: most are formally verified in Lean, and
the remaining ones rely on the correctness of fundamental OCaml operators.

5.6 EQ5: Comparison with other SMT frontends

We identified six relevant open-source SMT frontends: JavaSMT [4], PySMT [34],
rsmt2 [19], SBV [28], Smt-Switch [46], and what4 [39]. We excluded JavaSMT,
rsmt2, SBV, and what4 as they do not accept SMT-LIB input, making it impossi-
ble to measure their performance using standard benchmarks. We also excluded
Smt-Switch, a state-of-the-art C++ frontend, because it throws an error when
processing multiple formulas with the same solver instance if given two indepen-
dent formulas in which there is a shared variable name. This behaviour forces
the creation of a new solver instance for each query, preventing a fair comparison
with SMT.ML, which reuses the same solver instance every time, and is, therefore,
considerably faster. We are collaborating with the Smt-Switch team to resolve
this* and will include a proper comparison in the final version of the paper.

Therefore, we compare SMT.ML against the only remaining frontend,
PySMT [34]. We evaluated PySMT on the symbolic execution dataset described
in §5.4, using cvch and Z3 as backend solvers, as they are the only two solvers
supported by both SMT.ML and PySMT.

Results. The comparison between SMT.ML s Frontend Comparison - Smt.ml vs PySMT
and PySMT is shown on the right-hand
side. For both frontends, we used the best-
performing configurations. The results show
that SMT.ML substantially outperforms PySMT,
with speedups of 4.34x and 4.25x with Z3 and
cveh, respectively. This can be partly attributed
to the implementation languages: SMT.ML is
implemented in OCaml, a compiled language, / I
whereas PySMT is written in Python, an inter- i
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Takeaway 5: SMT.ML significantly outperforms the only comparable SMT fron-
tend on symbolic execution benchmarks.

6 Related Work

SMT Solvers. SMT solvers have seen significant advancements since their emer-
gence in the early 2000s [6, 8,24, 26,27], such as support for new theories, like
strings [43] and quantified arithmetic [1], and new optimisation techniques, like
new caching mechanisms [64] and portfolio strategies [55,60]. As a result, they

4 See https://github.com /stanford-centaur /smt-switch /pull /437.
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are now used across the entire computer science community, with a wide variety
of applications ranging from software verification and test generation [31,40, 42]
to combinatorial optimisation and classical operations research [11].

Currently, many SMT solvers are actively maintained, with 20 submitted to
the 2024 edition of SMT-COMP [14]. Importantly, there is no one-size-fits-all
solver: some excel in handling certain theories, others excel in handling others.
Our solver selection for SMT.ML integration is guided by our specific needs. Ini-
tially, we supported Z3 [26] and Colibri2 [12], as they were already being used
in our ongoing projects. Subsequently, we added support for cveb [6] and Bitwu-
zla [50], due to their excellent performance with bit-vectors and floating-point
arithmetic, which are frequently required in symbolic execution. Most recently,
we have also interfaced with Alt-Ergo [22], because it is the only SMT solver
implemented entirely in OCaml. This makes it particularly attractive for our
ecosystem, as it enables applications depending on Alt-Ergo to be compiled
with js_of_ocaml [65], allowing native execution directly within the browser.

Frontends for SMT Solvers. Frontends [4, 19,28, 34, 39, 46] play an essential role
in making SMT solvers more accessible to the broader computer science au-
dience. These interfaces often come with user-friendly input languages that are
both more expressive and closer to real-world problem domains than the logics of
existing solvers, streamlining user interaction. Frontends also facilitate integra-
tion with high-level programming languages, allowing SMT-solving capabilities
to be seamlessly embedded into applications and formal verification processes.

The two solver frontends closest to SMT.ML in spirit are PySMT [34] and Smt-
Switch [46]. They are written in Python and C++, respectively, and equip users
with a high-level API for interacting with various SMT solvers, abstracting the
low-level solver-specific details. PySMT supports five solvers, while Smt-Switch
supports six. In particular, PySMT supports Z3, cveb, Yices2 [27], Boolector [51],
and MathSATS5 [21], whereas Smt-Switch supports Z3, cve5, Yices2, MathSATS,
Bitwuzla, and Boolector. PySMT further implements a solver-agnostic optimi-
sation layer that uses a set of simplification rules not unlike ours before passing
the formulas to the solvers. However, SMT.ML is the only SMT frontend that
includes a simplification-management engine for streamlining the integration of
new simplifications and the verification of their correctness. Furthermore, unlike
PySMT and Smt-Switch, SMT.ML also inlcudes an integrated caching system,
which is essential for containing memory consumption in our target applications
and further improves performance. Finally, as the first SMT-solver frontend for
OCaml, SMT.ML makes it easier for program analysis and verification tools im-
plemented in OCaml (e.g., Frama-C [23], Binsec [25], Gillian [31]) to interface
with multiple SMT solvers and take advantage of its optimisations.

Caching and Simplifications for SMT Solvers. While most SMT solvers apply
some built-in simplifications as part of a preprocessing step before the core satis-
fiability check [6, 26], the practical scope of these simplifications is often limited.
For this reason, prior work has explored augmenting SMT workflows with addi-
tional simplification capabilities by either integrating them into the solver code-
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base [52] or applying them as a preprocessing stage before invoking the solver [31,
35, 45]. Empirical evidence shows that such simplifications are important for
tool performance: for example, the verification of the real-world AWS code done
in [45] would not have been tractable without simplifications. Our contribution
differs from these systems in that we are the first to propose a declarative DSL for
specifying simplifications, from which we generate both their implementations
and proof skeletons. This design streamlines the management and verification of
simplifications, keeping them out of the trusted computing base.

The primary SMT application that benefits from formula caching is symbolic
execution [5,17]. Symbolic execution of a program produces path formulas that
record the branch conditions encountered during execution; these formulas of-
ten contain redundancies across different executions and even within the same
one. For this reason, many high-profile symbolic execution tools implement for-
mula caching [16, 54, 59|, often reimplementing similar code. To address this, the
Green system was proposed to factor formula caching out of individual symbolic
execution tools so that different tools can share a common cache [64]. We fol-
low the same philosophy in SMT.ML, shifting the responsibility for caching from
SMT clients to SMT.ML. Unlike Green, however, we combine formula caching
with hash-consing to reduce memory footprint.

7 Conclusions

We presented SMT.ML, a novel OCaml frontend for multiple SMT solvers. In
contrast to existing frontends for SMT solvers in other languages, SMT.ML
incorporates a solver-agnostic caching system and introduces a simplification-
management engine that allows users to specify formula simplifications and prove
their correctness. Our evaluation shows that SMT.ML’s maintains consistent be-
haviour with its backend SMT solvers and introduces no significant overhead. We
further demonstrate that, for formulas generated from the symbolic execution
of programs, SMT.ML’s optimisations are highly effective, leading to significant
performance improvements.

In future, we plan to explore a number of pathways for advancing the work
on SMT.ML. Firstly, we will continue to add support for new solver backends and
also offer developers the option to create solver portfolios parameterised on solver
selection strategies. Moreover, we plan to improve our simplification module by
adding further, more complex, simplifications, based on those currently present
in state-of-the-art symbolic executors [31,58]. Finally, we will also investigate
the option of integrating large language models with SMT.ML, with the aim of
automating the proofs of simplification correctness.
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A List of Simplifications

All default simplifications used by our simplification engine are listed below,
written in our DSL syntax. Each rule is shown as a simplification from the left-
hand side to the right-hand side.

A.1 Definitional Simplifications

1. ((unop _ty Head (concrete Ty_list 1)) — (List.hd 1))
2. ((unop _ty Reverse (concrete Ty_list 1))
—> (concrete Ty_list (List.rev 1)))
3. ((unop _ty Tail (concrete Ty_list 1))
— (concrete Ty_list (List.tl 1)))
4. ((unop _ty Length (concrete Ty_list 1))
—> (Val (Int (List.length 1))))
5. ((binop _ty At (concrete Ty_list es) (Val (Int n)))
= (List.nth es n))
6. ((binop _ty List_cons htel (concrete Ty_list 1))
— (concrete Ty_list (List.cons htel 1)))
7. ((binop _ty List_append (concrete Ty_list 10) (concrete Ty_list [1))
—> (concrete Ty_list 10))
8. ((binop _ty List_append (concrete Ty_list []) (concrete Ty_list 11))
—> (concrete Ty_list 11))
9. ((binop _ty List_append (concrete Ty_list 10) (Val (List 11)))
—> (concrete Ty_list (List.append 10 (List.map value 11))))
10. ((binop _ty List_append (Val (List 10)) (concrete Ty_list 11))
—> (concrete Ty_list (List.append (List.map value 10) 11)))
11. ((binop _ty List_append (concrete Ty_list 10) (concrete Ty_list 11))
—> (concrete Ty_list (List.append 10 11)))

A.2 Non-Definitional Simplifications

(Cunop _ Not (unop _ty Not x)) — (x))

((unop _ Neg (unop _ty Neg x)) = (x))

((unop _ Not (relop ty Lt el e2)) — (relop ty Le e2 el))
(Cunop _ Not (relop ty Le el e2)) = (relop ty Lt e2 el))
(Cunop _ Not (relop ty Gt el e2)) = (relop ty Le el e2))
(Cunop _ Not (relop ty Ge el e2)) — (relop ty Lt el e2))
(Cunop _ty Reverse (unop _ty Reverse 1)) = (1))

((binop _ty And (Val True) hte) — hte)

((binop _ty And hte (Val True)) — hte)

. ((binop _ty Or (Val (Bitv @)) hte2) = hte2)

. ((binop _ty Or htel (Val (Bitv @))) = htel)

. ((binop _ty Add (Val (Bitv @)) htel) — htel)

. ((binop _ty Add htel (Val (Bitv @))) == htel)

. ((binop _ty And (Val (Bitv @)) _hte2) = (Val (Bitv 0)))
. ((binop _ty And _htel (Val (Bitv 0))) — (Val (Bitv 0)))
. ((binop _ty Mul (val (Bitv @)) _hte2) = (Val (Bitv 0)))
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((binop _ty Mul _htel (Val (Bitv 0))) = (Val (Bitv 0)))
((binop _ty Mul (Val (Bitv 1)) hte2) — hte2)
((binop _ty Mul htel (Val (Bitv 1))) =— htel)
((binop ty Add (binop ty Add x (Val v1)) (Val v2))
—> (binop ty Add x (Val (Eval.binop ty Add v1 v2))))
((binop ty Sub (binop ty Sub x (Val v1)) (val v2))
= (binop ty Sub x (Val (Eval.binop ty Sub v1 v2))))
((binop ty Mul (binop ty Mul x (Val v1)) (val v2))
—> (binop ty Mul x (Val (Eval.binop ty Mul v1 v2))))
((binop ty Add (Val v1) (binop ty Add x (Val v2)))
—> (binop ty Add (Val (Eval.binop ty Add v1 v2)) x))
((binop ty Mul (Val v1) (binop ty Mul x (Val v2)))
= (binop ty Mul (Val (Eval.binop ty Mul v1 v2)) x))
((triop _ty Ite (Val True) el _e2) — (el))
((triop _ty Ite (Val False) _el e2) — (e2))
((triop _ty Ite c1 (triop _tyl Ite c2 el e2) (triop _ty2 Ite c3 e3 e4))
—> (triop _ty Ite (binop Ty_bool And c1 c2) el
(triop ty Ite c1 e2 (triop _ty Ite c3 e3 ed))))
((triop ty Extract bv (Val (Int h)) (Val (Int 1))) = (bv)
when (h < (size bv) && (1 >= @) && (1 <= h) && (size bv) == (h - 1)))
((naryop Ty_str Concat
[(naryop Ty_str Concat 11); (naryop Ty_str Concat 12)])
— (naryop Ty_str Concat (List.append 11 12)))
((naryop Ty_str Concat [(naryop Ty_str Concat htes); htel)
= (naryop Ty_str Concat (List.append htes [htel)))
((naryop Ty_str Concat [hte; (naryop Ty_str Concat htes)])
— (naryop Ty_str Concat (List.cons hte htes)))
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B Frontends for SMT Solvers

Table 2 presents a comparison of different SMT-solver frontends, including
SMT.ML, based on various features such as language, SMT-LIB2 support, opti-
misations, and project status and Table 3 lists the solvers by each SMT frontend.

Table 2: Comparison of different SMT-solver frontends

Optimisations Project

R .

Tool Language g QE ”§ g ai; 8
n

%
SMT.ML OCaml 4 v v 4 51 2025
PySMT [34] Python v v X v 619 2025
Smt-Switch [46] | C++ v X X v 130 2025
JavaSMT [4] Java X v X v 229 2025
SBV [28] Haskell X X X v 261 2025
WHAT4 [39] Haskell X X X v/ 169 2025
rsmt2 [19] Rust X X X X 67 2022

Table 3: Supported solvers across different SMT frontends

Tool ‘ # ‘ Supported Solvers

SMT.ML 5 Alt-Ergo, Bitwuzla, Colibri2, cvch, Z3

PySMT 5 Boolector, cveh, MathSATS, Yices2, Z3

Smt-Switch 6 Bitwuzla, Boolector, cveb, MathSATS, Yices2, Z3

JavaSMT 11 Bitwuzla, Boolector, CVC4 (8], cveh, MathSATS5,
OpenSMT [37], OptiMathSAT [61], Princess [13],

SMTInterpol [20], Yices2, Z3
SBV 10 ABC [3], Bitwuzla, Boolector, CVC4, cvc5,
DReal [33], MathSATS5, OpenSMT, Yices2, Z3
WHAT4 9 ABC, Bitwuzla, Boolector, CVC4, cvch, DReal,
STP [32], Yices, Z3
rsmt2 3 CVC(C4, Yices2, Z3




