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Software is everywhere

Aerospace Healthcare
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And it can be faulty (bugged)

Ariane 5 * Therac-25 **
(Arithmetic overflow) (Race condition)
Loss of over US$370 million Deaths and injuries of patients

More examples:
https://en.wikipedia.org/wiki/List_of_software_bugs

*Photo: ©OESA
**Figure from: “Medical Devices: The Therac-25" by Nancy G. Leveson
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Behind the software, there are programs.

Deductive Verification

Inputs / Program G Outputs O

Post

Pre G
L

{Pre} G{Post} = WV (proven?)
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Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]
in+2 = €n42
) len, nth, extract, concat,
Operations select and store.
update and others.
Widely explored .
Pros Expressiveness
[CH15; MBO09] P
Cons — Lack of expressiveness — Scarce literature
— Fixed size — Few solvers support it

For the following data structures from programming languages:

> Arrays (OCaml, C)
» Vectors (Rust, C++)

> ArrayLists (Java)
> Lists (Python)

Sequences are more suitable as they are semantically closer.
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In this thesis: A different theory of Sequences

Context:
» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

» Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences

An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index Is.

» Conveniently represent and efficiently reason over n-indexed sequences.

» A generalization of the theory of sequences.
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Outline

1. The SMT theory of n-Indexed Sequences
2. Reasoning over n-Indexed Sequences

3. Implementation

4. Experimental Evaluation

5. Conclusion
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» f. and ls: the first and last index of s.
> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

> set(s,i,v): if fs < i <l returns a copy of s in which i is associated to v,
otherwise returns s.

» const(f,/,v): an n-indexed sequence with f as a first index, / as a last
index and all its elements are v.
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» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.
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Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

To read more on SMT theory design and semantic choices:

> "On SMT Theory Design: The Case of Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot and Guillaume Bury. LPAR 2024
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Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

> slice(a, f,/): if f, < f <<, returns a new n-indexed sequence that has
the same elements as a within the bounds f and /, otherwise returns a.

Extensionality

The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a=0b) =
(fa=TfoAla=1pA
Vi:lnt, f, <i<l, — get(a,i) = get(b,i))
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Outline

2. Reasoning over n-Indexed Sequences
o Using existing theories
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Axiomatization /Encoding of n-Sequences

Axiomatization (with arrays):
» Most operations need to be axiomatized.

» Introduces too many quantified formulas.

Encoding using Sequences and Algebraic Data Types:
Avoids using as many quantifiers.
> Depends on two other theories (Sequences and ADTs).

» Differences in the semantics make the definitions complex.
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n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}
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n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
> f, = n.fst and |, = n.fst + len(n.seq) — 1
» get(n, i) = nth(n.seq, i — n.fst)

Except const(f, /, v), which has no counterpart in the theory of sequences:
> It can be axiomatized:

n=const(f,l,v) < f,=fAl,=IA
Viif <i<| = get(n,i)=v
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2. Reasoning over n-Indexed Sequences

o Porting calculi on Sequences to n-Sequences
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Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.
> Adapts array axioms to sequences (idx,select-over-store)
> Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:

» The bounds of n-sequences are between the first and the last index
> Reasoning over the relocation of n-indexed sequences
To read more on NS-BASE and NS-EXT:

> "An SMT Theory for n-Indexed Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. SMT 2024

> 'Reasoning over n-indexed sequences in SMT"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)
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Calculi Summary: NS-BASE and NS-EXT

Operations NS-BASE NS-EXT
get String Array reasoning
set reasoning

concat String String
slice reasoning reasoning
update

Limitations:

» Eager normalization is often costly and sometimes unnecessary.

Alternative:

» A new calculus that lazily reasons over slices.
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Outline

2. Reasoning over n-Indexed Sequences

e The Shared-Slices calculus
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Reasoning over weak-equivalency and shared-slices

get(s;,)=v s L S
Get-Over-WEq
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Extensionality with NS-ShS

S1 &> S
Ext-ShS 1>
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Extensionality with NS-ShS
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Calculi Summary: NS-BASE, NS-EXT and NS-ShS

Operations NS-BASE NS-EXT NS-ShS
get String Array reasoning | Array reasoning
set reasoning
concat String String Lazy
slice reasoning reasoning (Shared-slices)
update reasoning
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Outline

2. Reasoning over n-Indexed Sequences

o Reasoning over relocation
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Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =

lg, = ls, — s, +F5, A
ME Int’fsl i< I51 = get(sl’ i) = get(52, i— f51 +fsz)
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Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =
lg, = ls, — fs, + Fs, A
ME Int’fsl i< lSl = get(sl’ i) = get(52, i— f51 +fsz)

s’ = relocate(s, /)
i=fsAs'=s Il
i #fs Ny =iNlg =i+1s—fsA

’
S =reloc S

Reloc-Bounds

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.
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NS-Comp-Reloc
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Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1 )

relocate( ko, fy, — fs +f,)
relocate(k,, fx, — fs+fr)

v = S =reloc

Get-Reloc

get(s, /)
P<fVis<i | fsg <IsAv=get(r,i—fs+f,)

» Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
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Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1 )

relocate(k, fr, — s +1,)
relocate(k,, fx, — fs + fr)
vV = S =reloc I

. get(s. /)
et-Reloc
P<fVis<i | fsg <IsAv=get(r,i—fs+f,)

» Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
» Our extension to the union-find data structure helps mitigate that.
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Implementation context

NS-Base, NS-Ext and NS-ShS were implemented in Colibri2:
» A reimplementation in OCaml of the COLIBRI CP solver.
» A CP solver used to reason over SMT problems.

» That does not use a SAT solver or clause learning.

> Compensates with (abstract) domains, propagations and scheduling.
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3. Implementation

e Equivalence modulo relocation
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The equivalence modulo relocation relation is represented using a labeled
union-find.
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union-find.
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S ENds
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The equivalence modulo relocation relation is represented using a labeled
union-find.
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add_relation(d, b, c)

y NOAON

Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
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Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f flnd = a, /2 A
Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

> |s invertible. » |s associative. » Has an identity element.

Forming a group with the labels.
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In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d = relocate(c, j)

(2 ROIOy

i-f,

35/49



Equivalence modulo relocation I
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In the labeled union-find used to represent equivalence modulo relocation:
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» Labels: linear polynomials.
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Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:

» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d= relocate(c j) c = relocate(a, k)

@ /ff k- f,
()

&Y

In the implementation, it also holds a domain:

0 r

01+ S
r— M : 1 1

On > Sp

U {61 — 5,/} — 6,’ € DOH’I(M) — 5./ = s
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Constraint factorization
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Constraint factorization

01 02

{k1 — V1} {kz — VQ}

) S =reloc
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Constraint factorization

S =reloc

Get-Reloc

)
i<fVis<i || f<i<IAv=get(r,i—"fs+f,)
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Constraint factorization

ki—wn ko = w
ko — vo — 0o + 01 ki—d1+6 —>wv

vV = ) S =reloc I

get(s,
i<fVis<i | fs§ <IsAv=get(r,i—fs+f,)

Get-Reloc
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Constraint factorization

61 N

{ke = w} {ko = v}
v = get(s, i s= r
Get-Reloc—— - get( ) reloc .
i<fVvis<i || f£<i<IAv=get(r,i—fs+f)
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Constraint factorization

V= ) S =reloc I

Get-Reloc

get(s,
i<fVis<i | fs§ <IsAv=get(r,i—fs+f,)
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Constraint factorization

) S =reloc I

Get-Reloc (
i<faVig<i || fs§ <IsAv=get(r,i—fs+f,)

Also applies to NS-Comp-Reloc:

= k - k2 - kn S =reloc I

NS-Comp-Reloc
r= relocate(k1 )

relocate(kp, fr, — s +1,)
relocate(k,, fx, — fs+fr)

37/49



Constraint factorization

To read more on how it is used in arithmetic reasoning:

> "Relational Abstractions Based on Labeled Union-Find"
Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and Francois
Bobot. PLDI 2025
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Encoding sequences over n-Indexed Sequences

» Each sequences s: An n-sequence with fs =0 and s > —1

P> seq.empty: Represented by a special constant symbol ¢, an empty
n-sequence with f. =0 and I = —1.

» seq.++(s1,52,53, .-, 5n):

let(c1, concat(sy, relocate(sy, I, +1)),
let(cy, concat(cy, relocate(ss, I, +1)),

concat(c,—o, relocate(s, le,_, +1)))))
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4. Experimental Evaluation

40/49



Experimental evaluation: context

» The experimentation was done on quantifier free sequence and n-sequence
benchmarks, containing only sequence and n-sequence operations.

» The experimentation compares implementations of NS-BASE, NS-EXT and
NS-ShS in Colibri2 with:

» Sequence support in cvch and Z3.
» Support for n-sequences encoded with ADTs and Sequences in cvch and Z3.

41/49



Experimental evaluation: UNSAT Seq
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Figure: Number of solved goals by accumulated time (in
seconds) on unsatisfiable quantifier-free Sequence
benchmarks.
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Experimental evaluation: UNSAT NSeq
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Experimental evaluation: SAT NSeq
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1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
o Using existing theories
e Porting calculi on Sequences to n-Sequences
e The Shared-Slices calculus
o Reasoning over relocation

3. Implementation
o Context
o Equivalence modulo relocation
o Constraint factorization
e Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion
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Conclusion

Contributions presented in this talk:

> The theory of n-Indexed Sequences. Contributions to software:
» Various ways to reason over it. » Colibri2
» Experimental evaluation. > Alt-Ergo
Additional contributions in the manuscript: > Smtml
» Soundness proofs. > Dolmen
» SMT LSP

» |Implementation details and formalizations.
» Work on real and integer arithmetic reasoning.
(Labeled union-find for intervals and difference logic)

Future work:

» Acquire more benchmarks
> Add (n-)sequences to Alt-Ergo

» Improve reasoning over n-sequences with quantifiers.
Other:

» Co-supervized an intern for 6 months (Félix
Loyau-Kahn, Master's student) on using Al for SMT
solver selection.
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Publications

» "On SMT Theory Design: The Case of Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot and Guillaume Bury. LPAR 2024
» "An SMT Theory for n-Indexed Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. SMT 2024
» '""Reasoning over n-indexed sequences in SMT"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)
» "Relational Abstractions Based on Labeled Union-Find"
Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and Francois
Bobot. PLDI 2025

"'Constraint Propagation for Bit-Vectors in Alt-Ergo"
Hichem Rami Ait-El-Hara, Guillaume Bury, Basile Clément, and Pierre
Villemot. SMT 2025

Preprints:

"Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml"

Jo3o Madeira Pereira, Filipe Marques, Pedro Ad3o, Hichem Rami Ait-El-Hara,
Léo Andres, Arthur Carcano, Pierre Chambart, Nuno Santos, and José Fragoso
Santos. To be submitted to TACAS 2026.
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Reduced Product

0. 1init: 1. assert (b<T):
[-5:5] a c [8;10) [-5;5] N [-50] = [-5:0] a c [8:16]
(s T e
2:12] b 3:11] 212)<7-[27 b d [3:11]

2. repr_change_hook(c, 10, b):

[=5:0] N [=2:0] — [-2:0] a <X ¢ [8:16] N [5:10] — [8;10]
7 —5
[2:7] N [5:7] = [%7] b d [#%11]n[3:5] — [3:5]
3. emnd:
[-2,0] a<ll . [8,10]
7 )
5.7 b d [3.5]

Figure 6.4: Example of the usage of the constant difference relation for constraint propagation

over the domain of intervals.
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Group Action

0. init: 1. assert (b<T):
[-5:5] a c
TT T—ﬁ 7 I—S
b d b d

2. repr_change_hooky, (c, 10, b):

[=5:0] N [-2:6] — [-2:0] a <0 ¢

1 b

Figure 6.5: Example of the usage of the constant difference relation for constraint factorization

over the domain of intervals.

[8;16] [=5:5]N] — 00; 0] = [-5;0] a c [8:16]
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Normal forms

Definition (NSeq term normal form)

For simplicity, we introduce the concatenation operator :: with the invariant:

s—=susy = fs=f  Nls=I1,Nf,, =15 +1

Normalization

The following rewriting rules are applied whenever possible:
S R — sly oz[
{ o spfe vz {5 [wi 2]y = 2] we)
X—yz X—yz
And if |, < f, is deduced:
s [wy ]y oz w s [wy ]z w
{ [wi =]y 2w . { [wi :]z[:: we]

X—=y.z Xtz
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