PhD. Defense

Theory of Sequences
Tailored for Program Verification

Théorie des séquences adaptée a la vérification des programmes

by Hichem Rami AIT EL HARA!?

Under the supervision of Francois BOBOT?and Guillaume BURY*

l0CamlPro
2Université Paris-Saclay, CEA, LIST

Gocmmm B

1/49

Software is everywhere

Aerospace Healthcare

2/49

And it can be faulty (bugged)

Ariane 5 * Therac-25 **
(Arithmetic overflow) (Race condition)
Loss of over US$370 million Deaths and injuries of patients

More examples:
https://en.wikipedia.org/wiki/List_of_software_bugs

*Photo: ©OESA
**Figure from: “Medical Devices: The Therac-25" by Nancy G. Leveson

3/49

https://en.wikipedia.org/wiki/List_of_software_bugs

Behind the software, there are programs.

Inputs / Program G Outputs O

4/49

Behind the software, there are programs.

Inputs / Program G Outputs O

4/49

Behind the software, there are programs.

Testing

Inputs / Program G Outputs O

4/49

Behind the software, there are programs.

Testing

Inputs | = oo Program G Outputs O

4/49

Behind the software, there are programs.

Deductive Verification

Inputs / Program G Outputs O

Pre G Post

4/49

Behind the software, there are programs.

Deductive Verification

Inputs / Program G Outputs O

Post

Pre G
L

{Pre} G{Post}

4/49

Behind the software, there are programs.

Deductive Verification

Inputs / Program G Outputs O

Post

Pre G
L

{Pre} G{Post} = WV (proven?)

4/49

Avoiding Bugs in the Real World

5/49

Avoiding Bugs in the Real World

C

Y
Frama-C/WP

5/49

Avoiding Bugs in the Real World

C--.
R
| N

\ \

\
Frama-C/WP [

I
/

TIS-Analyser/J3

5/49

Avoiding Bugs in the Real World

5/49

Avoiding Bugs in the Real World

| N

| \

\ \

\
Frama-C/WP [

I
/

C--_ Ada Rust
|
|
|
|
|
|
|
|
|
|
|
|

»
TIS-Analyser/J3
v /
/
SPARK | -

’

7/
Creusot

5/49

Avoiding Bugs in the Real World

’

Creusot

5/49

Avoiding Bugs in the Real World

’

[Logical formulas] Creusot

5/49

Avoiding Bugs in the Real World

’

[Logical formulas] Creusot

5/49

Avoiding Bugs in the Real World

[Logical formulas]

5/49

Avoiding Bugs in the Real World

/ N ¥ N
| N [Dafny] [Frama-C/WP

\
\
Al

[Logical formulas]

LLVM Wasm C--. Ac‘ia Rust
/ \
|
|
|
|
|
I
I
I
I
I
|

5/49

Avoiding Bugs in the Real World

/ N ¥ N
| N [Dafny] [Frama-C/WP

\
\
Al

[Logical formulas]

LLVM Wasm C--. Ac‘ia Rust
/ \
|
|
|
|
|
I
I
I
I
I
|

5/49

Avoiding Bugs in the Real World

[Logical formulas]

5/49

Avoiding Bugs in the Real World

5/49

Avoiding Bugs in the Real World

5/49

Avoiding Bugs in the Real World

=

:\ SeaCoral “ N [Dafny] [Frama-C/WP

LLVM Wasm - ? -~ Aga Rust
/ \ + :
|
|
|
I
I
I
I
I
|

(SmtmL) [Why3
i N
SMT solvers Creusot

© ———>| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

5/49

Avoiding Bugs in the Real World

=

:\ SeaCoral “ N [Dafny] [Frama-C/WP

LLVM Wasm - ? -~ Aga Rust
/ \ + :
|
|
|
I
I
I
I
I
|

(SmtmL) [Why3
i N
SMT solvers Creusot

© ———>| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

In the industry:

5/49

Avoiding Bugs in the Real World

LLVM Wasm -
/ \

—\"

:\ SeaCoral “ N [Dafny] [Frama-C/WP

-C-- Ada Rust

|

; i
|
|
|
|
|
|
|
|
|

(SmtmL) [Why3 .
!]
SMT solvers Creusot

© ———>| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

In the industry:

» AirBus (Frama-C/WP)

5/49

Avoiding Bugs in the Real World

LN

LLVM Wasm G- Ada Rust
|I/ 4—\:\”””1 + - : \\
i | SeaCoral N [Dafny] [Frama-C/WP ! !
\ : |

S A I |
H |
N |
|
\

(SmtmL) [Whys .
Atelier B & /
SMT solvers:

© ——>| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

In the industry:

» AirBus (Frama-C/WP)
> NVIDIA (SPARK)

5/49

Avoiding Bugs in the Real World

LLVM Wasm -
/ \

i \ -

—\"

| 4 \
1 | SeaCoral N [Dafny] [Frama-C/WP '
\\ \\
N v >
Owi TIS-Analyser/J3

(SmtmL) Whys] .
Atelier B &
SMT solvers

© ——>| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

-C-- Ada Rust

|

; i
|
|
|
|
|
|
|
|
\

In the industry:

» Mitsubishi Electric (T1S-Analyzer)
» AirBus (Frama-C/WP)

> NVIDIA (SPARK)

5/49

Avoiding Bugs in the Real World

LLVM Wasm _--C--0
/ \

I N - v

—\"

:\ SeaCoral “ N [Dafny] [Frama-C/WP

\

\
X »
Owi TIS-Analyser/J3

SmtML | Whys] .

Atelier B & / -
SMT solvers:

v+ ———»| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

—_—

In the industry:
» Mitsubishi Electric (T1S-Analyzer)

» AirBus (Frama-C/WP
(/WP) » Thales (Frama-C/WP & SeaCoral)

> NVIDIA (SPARK)

5/49

Avoiding Bugs in the Real World

LLVM Wasm _--C--0
/ \

I N - v

—\"

:\ SeaCoral “ N [Dafny] [Frama-C/WP

\

\
X »
Owi TIS-Analyser/J3

SmtML | Whys] .

Atelier B & / -
SMT solvers:

v+ ———»| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

—_—

In the industry:
» Mitsubishi Electric (T1S-Analyzer)

» Thales (Frama-C/WP & SeaCoral)
> Alstom (Atelier B)

» AirBus (Frama-C/WP)
> NVIDIA (SPARK)

5/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p.q,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)

Question: is there a satisfying interpretation?

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)
Question: is there a satisfying interpretation?

F(T,L1,6,3)=(T=6>5A(L=3>4)A(TVL)A(®6+3<10)

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)
Question: is there a satisfying interpretation?

F(T,L1,6,3)=(T=6>5A(L=3>4)A(TVL)A(®6+3<10)
=TATATAT

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)
Question: is there a satisfying interpretation?

F(T,L1,6,3)=(T=6>5A(L=3>4)A(TVL)A(®6+3<10)
=TATATAT
=T

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example

F(p.a,x,y)=(p=x>5)A(q=y >4)A(pVq)A(x+y<10)
Question: is there a satisfying interpretation?

F(T,L1,6,3)=(T=6>5A(L=3>4)A(TVL)A(®6+3<10)
=TATATAT
=T

Yes, therefore F is satisfiable.

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p,g,x,y)=(p=x>5)A(q=y >4)A(pVag)A(x+y <10)A(p< q)

Question: is there a satisfying interpretation?

Flp,a,x,y)=(p=x>5)A(g=y =24 N(pVgA(x+y<10)A(p< q)

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p,g,x,y)=(p=x>5)A(q=y >4)A(pVag)A(x+y <10)A(p< q)

Question: is there a satisfying interpretation?

Flp,a,x,y)=(p=x>5)A(g=y =24 N(pVgA(x+y<10)A(p< q)
=(T=x>5)A(T=y>H)ANTA(x+y<10)AT

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

F(p,g,x,y)=(p=x>5)A(q=y >4)A(pVag)A(x+y <10)A(p< q)

Question: is there a satisfying interpretation?

Flp,a,x,y)=(p=x>5)A(g=y =24 N(pVgA(x+y<10)A(p< q)
=(T=x>5)A(T=y>HOATA(x+y <10)AT
=(x>5)A(y >4)A(x+y <10)

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example

F(p,a,x,y)=(p=x>5)A(g=y >4 A (pVa) A (x+y <10)A(p< q)
Question: is there a satisfying interpretation?

Flp,a,x,y)=(p=x>5)A(g=y =24 N(pVgA(x+y<10)A(p< q)
=(T=x>5)A(T=y>HOATA(x+y <10)AT
=(x>5)A(y >4)A(x+y <10)

=1

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example

F(p,a,x,y)=(p=x>5)A(g=y >4 A (pVa) A (x+y <10)A(p< q)
Question: is there a satisfying interpretation?

=(p=x>5A(g=y>4)AN(pVaA(x+y<10)A(p<q)
=(T=x>5)A(T=y>H)ANTA(x+y<10)AT
= (

x>5)A(y>4)A(x+y<10)
= A

F(p.a,x,y)

No, therefore F is unsatisfiable.

6/49

What is SMT (Satisfiability Modulo Theories)?

Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example

F(p,a,x,y)=(p=x>5)A(g=y >4 A (pVa) A (x+y <10)A(p< q)
Question: is there a satisfying interpretation?

=(p=x>5A(g=y>4)AN(pVaA(x+y<10)A(p<q)
=(T=x>5)A(T=y>H)ANTA(x+y<10)AT
= (

x>5)A(y>4)A(x+y<10)
= A

F(p.a,x,y)

No, therefore F is unsatisfiable. Inversely —F is valid.

6/49

Why are SMT solvers used?

7/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)

7/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)

> Efficiency (Combination of powerful decision procedures)

7/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

7/49

Avoiding Bugs in the Real World

=

:\ SeaCoral “ N [Dafny] [Frama-C/WP

LLVM Wasm - ? -~ Aga Rust
/ \ + :
|
|
|
I
I
I
I
I
|

(SmtmL) [Why3
i N
SMT solvers Creusot

© ———>| Alt-Ergo, Colibri2,
cveh, Z3, Yices2 ...

8/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Integers

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Integers

Reals

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Booleans

Integers

Reals

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Booleans BVs

Integers
Reals

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Booleans BVs

Integers FP Numbers
Reals

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Booleans

BVs
Integers FP Numbers
Reals ADTs

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

Booleans

BVs
Integers FP Numbers
Reals ADTs
Strings

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

[0 Mathematics

Booleans

BVs
Integers FP Numbers
Reals ADTs
Strings

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

[0 Mathematics [1 Programming

N

Booleans

BVs
FP Numbers
ADTs
Strings

Integers
Reals

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

[0 Mathematics [1 Programming

N

Booleans

BVs
Integers FP Numbers
Reals ADTs
Arrays Strings

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

[0 Mathematics [1 Programming

N

Booleans

BVs
Integers FP Numbers
Reals ADTs
Arrays Strings

Sequences

[J Standard Theories

9/49

Why are SMT solvers used?

> Expressiveness (Quantifies and various theories)
> Efficiency (Combination of powerful decision procedures)
» The SMT-LIB (Standard language and theories)

[0 Mathematics [1 Programming

N

Booleans

BVs
Integers FP Numbers
Reals ADTs
Arrays Strings

Sequences

[J Standard Theories

9/49

Arrays and Sequences in SMT

’ ‘ Arrays [McC62] ‘ Sequences [Bjg+12] ‘

10/49

Arrays and Sequences in SMT

Arrays [McC62]

Sequences [Bjg+12]

Sort

Array | E

Seq E

10/49

Arrays and Sequences in SMT

Arrays [McC62]

Sequences [Bjg+12]

in+2 — €n+2

Sort Array | E Seq E
in — €p
Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]

10/49

Arrays and Sequences in SMT

Arrays [McC62] Sequences [Bjg+12]
Sort Array | E Seq E
in— €n
Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]
in+2 = €n42
) len, nth, extract, concat,

Operations select and store.

update and others.

10/49

Arrays and Sequences in SMT

Arrays [McC62] Sequences [Bjg+12]
Sort Array | E Seq E
in — €p
Structure int1 F> ent1 [eo; ers ;... e-1]
in+2 = €n42
) len, nth, extract, concat,
Operations select and store.
update and others.
Widely explored .
Pros Expressiveness
[CH15; MBO09] P

10/49

Arrays and Sequences in SMT

Arrays [McC62] Sequences [Bjg+12]
Sort Array | E Seq E
in > €n
Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]
in+2 = €n42
) len, nth, extract, concat,
Operations select and store.
update and others.
Widely explored .
Pros Expressiveness
[CH15; MBO09] P
Cons — Lack of expressiveness — Scarce literature
— Fixed size — Few solvers support it

10/49

Arrays and Sequences in SMT

Arrays [McC62] Sequences [Bjg+12]
Sort Array | E Seq E
in > €n
Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]
in+2 = €n42
) len, nth, extract, concat,
Operations select and store.
update and others.
Widely explored .
Pros Expressiveness
[CH15; MBO09] P
Cons — Lack of expressiveness — Scarce literature
— Fixed size — Few solvers support it

For the following data structures from programming languages:

10/49

Arrays and Sequences in SMT

Arrays [McC62] Sequences [Bjg+12]
Sort Array | E Seq E
in > €n
Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]
in+2 = €n42
) len, nth, extract, concat,
Operations select and store.
update and others.
Widely explored .
Pros Expressiveness
[CH15; MBO09] P
Cons — Lack of expressiveness — Scarce literature
— Fixed size — Few solvers support it

For the following data structures from programming languages:

> Arrays (OCaml, C)
» Vectors (Rust, C++)

> ArrayLists (Java)
> Lists (Python)

10/49

Arrays and Sequences in SMT

Arrays [McC62] Sequences [Bjg+12]
Sort Array | E Seq E
in > €n
Structure fnt1 — €ny1 [eo; €1; €2; ... €1-1]
in+2 = €n42
) len, nth, extract, concat,
Operations select and store.
update and others.
Widely explored .
Pros Expressiveness
[CH15; MBO09] P
Cons — Lack of expressiveness — Scarce literature
— Fixed size — Few solvers support it

For the following data structures from programming languages:

> Arrays (OCaml, C)
» Vectors (Rust, C++)

> ArrayLists (Java)
> Lists (Python)

Sequences are more suitable as they are semantically closer.

10/49

In this thesis: A different theory of Sequences

Context:

11/49

In this thesis: A different theory of Sequences

Context:

» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

11/49

In this thesis: A different theory of Sequences

Context:
» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

» Encoding them in SMT is cumbersome and inefficient.

11/49

In this thesis: A different theory of Sequences

Context:
» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

» Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences

An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index Is.

11/49

In this thesis: A different theory of Sequences

Context:
» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

» Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences

An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index Is.

11/49

In this thesis: A different theory of Sequences

Context:
» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

» Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences

An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index Is.

» Conveniently represent and efficiently reason over n-indexed sequences.

11/49

In this thesis: A different theory of Sequences

Context:
» In Ada/Spark: sequences can be defined over an arbitrary range of integers.

» Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences

An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index Is.

» Conveniently represent and efficiently reason over n-indexed sequences.

» A generalization of the theory of sequences.

11/49

Outline

1. The SMT theory of n-Indexed Sequences
2. Reasoning over n-Indexed Sequences

3. Implementation

4. Experimental Evaluation

5. Conclusion

12/49

Outline

1. The SMT theory of n-Indexed Sequences

13/49

Semantics of the theory of n-Indexed Sequences |

» s and I;: the first and last index of s.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

Empty n-indexed sequence

An n-indexed sequence s is said to be empty if Is < fs. Two empty n-indexed
sequences a and b are equal only if f, =f, and |, = I,.

14/49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

i —

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

> set(s,i,v): if fs < i <l returns a copy of s in which i is associated to v,
otherwise returns s.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

> set(s,i,v): if fs < i <l returns a copy of s in which / is associated to v,
otherwise returns s.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.

> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

> set(s,i,v): if fs < i <l returns a copy of s in which i is associated to v,
otherwise returns s.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.
> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

> set(s,i,v): if fs < i <l returns a copy of s in which i is associated to v,
otherwise returns s.

» const(f,/,v): an n-indexed sequence with f as a first index, / as a last
index and all its elements are v.

14 /49

Semantics of the theory of n-Indexed Sequences |

» f. and ls: the first and last index of s.
> get(s,i): if fs < i <l returns the ith element of s, otherwise it is
uninterpreted.

> set(s,i,v): if fs < i <l returns a copy of s in which i is associated to v,
otherwise returns s.

» const(f,/,v): an n-indexed sequence with f as a first index, / as a last
index and all its elements are v.

> relocate(s, f): a copy of s relocated to the index f.

14 /49

Semantics of the theory of n-Indexed Sequences Il

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

a [|
b

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

a [| a [] |
b b
result [] result [

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

a [| a [| a [] |
b b b
result [] result [result []

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

a [| a [| a [] |
b b b
result [] result [result []

In the theory of sequences (in cvch) update(a, i, b):

a [| a [| a]
b b b
result [] result [] result [|

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

To read more on SMT theory design and semantic choices:

> "On SMT Theory Design: The Case of Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot and Guillaume Bury. LPAR 2024

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

> slice(a, f,/): if f, < f <<, returns a new n-indexed sequence that has
the same elements as a within the bounds f and /, otherwise returns a.

15/49

Semantics of the theory of n-Indexed Sequences Il

» concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

> update(a, b): if f, < fp <lp < |, returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

> slice(a, f,/): if f, < f <<, returns a new n-indexed sequence that has
the same elements as a within the bounds f and /, otherwise returns a.

Extensionality

The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a=0b) =
(fa=TfoAla=1pA
Vi:lnt, f, <i<l, — get(a,i) = get(b,i))

15/49

Outline

2. Reasoning over n-Indexed Sequences
o Using existing theories

16 /49

Axiomatization /Encoding of n-Sequences

Axiomatization (with arrays):
» Most operations need to be axiomatized.

» Introduces too many quantified formulas.

Encoding using Sequences and Algebraic Data Types:
Avoids using as many quantifiers.
> Depends on two other theories (Sequences and ADTs).

» Differences in the semantics make the definitions complex.

17/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

18/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:

18/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
» f, = n.fst

18/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
> f, = n.fst and |, = n.fst + len(n.seq) — 1

18/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:
NSeq(a) = {seq : Seq(a); fst : Int}
Other symbols of the theory are defined over it:

> f, = n.fst and |, = n.fst + len(n.seq) — 1
» get(n, i) = nth(n.seq, i — n.fst)

18/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
> f, = n.fst and |, = n.fst + len(n.seq) — 1
» get(n, i) = nth(n.seq, i — n.fst)

Except const(f, /, v), which has no counterpart in the theory of sequences:

18/49

Reasoning with Sequences and Algebraic Data Types |

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
> f, = n.fst and |, = n.fst + len(n.seq) — 1
» get(n, i) = nth(n.seq, i — n.fst)

Except const(f, /, v), which has no counterpart in the theory of sequences:
> It can be axiomatized:

n=const(f,l,v) < f,=fAl,=IA
Viif <i<| = get(n,i)=v

18/49

Outline

2. Reasoning over n-Indexed Sequences

o Porting calculi on Sequences to n-Sequences

19/49

Porting calculi on Sequences to n-Sequences

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23],

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

s’ = set(s,i,v)

s
Y —

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

s’ = set(s,i,v)

s

T

s=ky:ky:: ks

s' = kg const(i, i, v) i ks

S k1 kg k3

sk ks

const(i, i, v)

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.
s=wiyrizg

s=wiy i

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

Ss=wuyiz yvi=yuk&z=k:z
S=wiyin s=wuynkizn
s |w »n z1 s |w Y2 k 2
—_
s|w Y2 2 s |\w Y2 22

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.
> Adapts array axioms to sequences (idx,select-over-store)

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.
» EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.

> Adapts array axioms to sequences (idx,select-over-store)
> Propagates get and set operations to normal forms.

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.
> Adapts array axioms to sequences (idx,select-over-store)
> Propagates get and set operations to normal forms.
Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.
> Adapts array axioms to sequences (idx,select-over-store)
> Propagates get and set operations to normal forms.
Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:

» The bounds of n-sequences are between the first and the last index

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.
» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

> Adapts array axioms to sequences (idx,select-over-store)
> Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:

» The bounds of n-sequences are between the first and the last index
> Reasoning over the relocation of n-indexed sequences

20/49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

» BASE: based on string reasoning, works by reducing to concatenations.

» EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.
> Adapts array axioms to sequences (idx,select-over-store)
> Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:

» The bounds of n-sequences are between the first and the last index
> Reasoning over the relocation of n-indexed sequences
To read more on NS-BASE and NS-EXT:

> "An SMT Theory for n-Indexed Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. SMT 2024

> 'Reasoning over n-indexed sequences in SMT"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20/49

Calculi Summary: NS-BASE and NS-EXT

Operations NS-BASE NS-EXT
get String Array reasoning
set reasoning

concat String String
slice reasoning reasoning
update

Limitations:

» Eager normalization is often costly and sometimes unnecessary.

Alternative:

» A new calculus that lazily reasons over slices.

21/49

Outline

2. Reasoning over n-Indexed Sequences

e The Shared-Slices calculus

22/49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:

23 /49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:
> Weak-equivalence relations [CH15].

23 /49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:
> Weak-equivalence relations [CH15].

sy = set(sy, /i, v
Set-Bound-WEq (s1,7,v)

23 /49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:
> Weak-equivalence relations [CH15].

s, = set(s1, i, v)

Set-Bound-WEq
(i<f51\/i>|51)/\51252 H

23 /49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:
> Weak-equivalence relations [CH15].

sy = set(sy, /i, v
Set-Bound-WEq (s1,7,v)

(i<f51\/i>|51)/\51252 H
fo, i<l Afs, =Ffs, Alg, =15, A

23 /49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:
> Weak-equivalence relations [CH15].

SetBound WE s, = set(s1, 1, V)
et-Bounad- q - -
(I<f$l\/l>|51)/\51—52 H
fo, i<l Afs, =Ffs, Alg, =15, A

get(sy,) =vAs E—% S

[[lustration

S1 2

23 /49

The Shared-Slices (NS-ShS) Calculus |

Consists of representing operations over n-sequences as relations:
> Weak-equivalence relations [CH15].

SetBound WE s, = set(s1, 1, V)
et-Bounad- q - -
(I<f51\/l>|51)/\51—52 H
fo, i<l Afs, =Ffs, Alg, =15, A

get(sy,) =vAs E—% S

[[lustration

S3

|
> £, = fy Aly =y, v}

i
{3 J

> 51 & s3

s1 52
Given s3 = set(527j7 U): T T
With g, <j <, |
\
\

23 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

24 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

s1=[r) S2 = Vi.f <i<| = get(s1,i) = get(sy, i)

24 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

s1=[r) S2 = Vi.f <i<| = get(s1,i) = get(sy, i)

s’ = slice(s, f, /)
Slice-ShS-Intro

24 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

s1=[r) S2 = Vi.f <i<| = get(s1,i) = get(sy, i)

s’ = slice(s, f, /)
Slice-ShS-Intro

(fs >1sVE>IVis>fVvIi>Il)As=s |

24 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

s1=[r) S2 = Vi.f <i<| = get(s1,i) = get(sy, i)

s’ = slice(s, f, 1)

(fs >1sVE>IVis>fVvIi>Il)As=s |
fo <F<I<IAfo=FfAlg=INs=[ys

Slice-ShS-Intro

[llustration

24 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

s1=[r) S2 = Vi.f <i<| = get(s1,i) = get(sy, i)

s’ = slice(s, f, 1)

(fs >1sVE>IVis>fVvIi>Il)As=s |
fo <F<I<IAfo=FfAlg=INs=[ys

Slice-ShS-Intro

[llustration

if f¢ =f Als =1 then: /

24 /49

The Shared-Slices (NS-ShS) Calculus I

» The shared-slice relation:

s1=[r) S2 = Vi.f <i<| = get(s1,i) = get(sy, i)

s’ = slice(s, f, 1)

(fs >1sVE>IVis>fVvIi>Il)As=s |
fo <F<I<IAfo=FfAlg=INs=[ys

Slice-ShS-Intro

[llustration

if f¢ =f Als =1 then:
> s=5.

24 /49

Reasoning over weak-equivalency and shared-slices

get(s;,)=v s L S
Get-Over-WEq

25 /49

Reasoning over weak-equivalency and shared-slices

get(s;,)=v s L S

Get-Over-WEq - -
P <fgVi>lg I

25 /49

Reasoning over weak-equivalency and shared-slices

et(s;,i)=v s Es
Get-Over-WEq & - L - ! 2
P <fgVi>lg I
JeK i=j I
[llustration

s

25 /49

Reasoning over weak-equivalency and shared-slices

et(s;,i)=v s Es
Get-Over-WEq & - L - ! 2
P <fgVi>lg I
I

deK. i=j
fo, <i<Ig AVjeEK.i#]j)ANget(sy,i)=v

[llustration

S1 52

K

11—
I

25 /49

Reasoning over weak-equivalency and shared-slices

et(s;,i)=v s Es
Get-Over-WEq & _17 - ! 2
P <fgVi>lg I
JieK. i=j I

fo, <i<Ig AVj€K.i#j)ANget(sy,i)=v

v =get(s,i) s1=[ry 52
Get-Over-ShS

[[lustration

S

25 /49

Reasoning over weak-equivalency and shared-slices

et(s;,i)=v s Es
Get-Over-WEq & _17 - ! 2
P <fgVi>lg I
JieK. i=j I

fo, <i<Ig AVj€K.i#j)ANget(sy,i)=v

v =get(s,i) s1=[ry 52

i<fvi>| I

Get-Over-ShS

[[lustration

UG

25 /49

Reasoning over weak-equivalency and shared-slices

et(s;,i)=v s Es
Get-Over-WEq & _17 - ! 2
P <fgVi>lg I
JieK. i=j I

fo, <i<Ig AVj€K.i#j)ANget(sy,i)=v

v =get(s,i) s1=[ry 52
i<fvi>| I
f<i<IAget(sy,i)=v

Get-Over-ShS

[[lustration

S1 52
liv i|v

g

25 /49

Extensionality with NS-ShS

S1 &> S
Ext-ShS 1>

[llustration

26 /49

Extensionality with NS-ShS

K
TR AN
Ext-ShS 1>
s1=% I
[llustration
s1 2

26 /49

Extensionality with NS-ShS

K
S1 &> S
Ext-ShS 1>

51 =5 I
Jke K. fs, <k <Ig A

[llustration

26 /49

Extensionality with NS-ShS

PRPANS
Ext-ShS 1T
51 =5 I
Jk € K. fs, < k <ls Aget(si, k) # get(s2, k) A
[llustration
s1 2
k| |get(sy, k) get(sp, k)
K

26 /49

Extensionality with NS-ShS

PRPANS
Ext-ShS 1T
51 =5 I
Jk € K. fs, < k <ls Aget(si, k) # get(s2, k) A
Vi, l. s =[] 2 = k<fVk>IA
[llustration
el =
/
f
k| |get(sy, k) get(so, k)
K

26 /49

Extensionality with NS-ShS

s &8s
Ext-ShS 1T
s1=% I
Jk € K. fs, < k <ls Aget(si, k) # get(s2, k) A
Vi, l. s =[] 2 = k<fVk>IA
S1# S
[llustration
151 52
/
f
k| |get(sy, k) get(s2, k)
K

26 /49

Calculi Summary: NS-BASE, NS-EXT and NS-ShS

Operations NS-BASE NS-EXT NS-ShS
get String Array reasoning | Array reasoning
set reasoning
concat String String Lazy
slice reasoning reasoning (Shared-slices)
update reasoning

27 /49

Outline

2. Reasoning over n-Indexed Sequences

o Reasoning over relocation

28 /49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =

lg, = ls, — s, +F5, A
ME Int’fsl i< I51 = get(sl’ i) = get(52, i— f51 +fsz)

29/49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =

lg, = ls, — s, +F5, A
ME Int’fsl i< I51 = get(sl’ i) = get(52, i— f51 +fsz)

s’ = relocate(s, /)

Reloc-Bounds

29/49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =
lg, = ls, — fs, + Fs, A
ME Int’fsl i< I51 = get(sl’ i) = get(52, i— f51 +fsz)

s’ = relocate(s, /)

i=fsAs'=s Il

Reloc-Bounds

29/49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =
lg, = ls, — fs, + Fs, A
ME Int’fsl i< I51 = get(sl’ i) = get(52, i— f51 +fsz)

s’ = relocate(s, /)
Reloc-Bounds -
i=fsAs'=s Il

P fNfo =Ny =i+ 1s—FsA

29/49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =
lg, = ls, — fs, + Fs, A
ME Int’fsl i< I51 = get(sl’ i) = get(52, i— f51 +fsz)

s’ = relocate(s, /)
Reloc-Bounds -
i=fsAs'=s Il

P fNfo =Ny =i+ 1s—FsA

’
S =reloc S

29/49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)

Given s; and s, two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s; =,ejoc S, such that:

S1 =reloc S2 =
lg, = ls, — fs, + Fs, A
ME Int’fsl i< lSl = get(sl’ i) = get(52, i— f51 +fsz)

s’ = relocate(s, /)
i=fsAs'=s Il
i #fs Ny =iNlg =i+1s—fsA

’
S =reloc S

Reloc-Bounds

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29/49

Reasoning over relocation 2

s=ki k.. ks, S =reloc I

NS-Comp-Reloc

30/49

Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(ko, fy, — fs +f,)
relocate(k,, fx, — fs+fr)

30/49

Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(ko, fy, — fs +f,)
relocate(k,, fx, — fs+fr)

v = get(s, i s= r
Get-Reloc g (’) reloc

30/49

Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(ko, fy, — fs +f,)
relocate(k,, fx, — fs+fr)

v=get(s,i) S =reioc
i<fVis<i |

Get-Reloc

30/49

Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(k, fr, — s +1,)
relocate(k,, fx, — fs + fr)
vV = S =reloc I

. get(s. /)
et-Reloc
P<fVis<i | fsg <IsAv=get(r,i—fs+f,)

30/49

Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(ko, fy, — fs +f,)
relocate(k,, fx, — fs+fr)

v = S =reloc

Get-Reloc

get(s, /)
P<fVis<i | fsg <IsAv=get(r,i—fs+f,)

» Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.

30/49

Reasoning over relocation 2

= k i k2 : kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(k, fr, — s +1,)
relocate(k,, fx, — fs + fr)
vV = S =reloc I

. get(s. /)
et-Reloc
P<fVis<i | fsg <IsAv=get(r,i—fs+f,)

» Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
» Our extension to the union-find data structure helps mitigate that.

30/49

Outline

3. Implementation
o Context

31/49

Implementation context

NS-Base, NS-Ext and NS-ShS were implemented in Colibri2:
» A reimplementation in OCaml of the COLIBRI CP solver.
» A CP solver used to reason over SMT problems.

» That does not use a SAT solver or clause learning.

> Compensates with (abstract) domains, propagations and scheduling.

32/49

Outline

3. Implementation

e Equivalence modulo relocation

33/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

(2

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b) union(c, d)

RS

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b) union(c, d) union(c,a)

OJONENO

S dNdy

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b) union(c, d) union(c,a) find(d) = a

S ENds

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, h, a)

h

Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, h, a)
add_relation(d, b, c)

y NOAON

Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f
Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f flnd
Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled

union-find.

add_relation(b, h, a) add_relation(c, k, a)

f add_relation(d, b, c f flnd = a, /2 A

Definition
Labeled union-find is an extension of union-find in which the relation between

elements is parametrized (labeled).
The labels have a composition operation that:

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled

union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f flnd = a, /2 A

Definition

Labeled union-find is an extension of union-find in which the relation between

elements is parametrized (labeled).
The labels have a composition operation that:

» s invertible.

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled

union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f flnd = a, /2 A

Definition

Labeled union-find is an extension of union-find in which the relation between

elements is parametrized (labeled).
The labels have a composition operation that:

» s invertible. » [s associative.

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled

union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f flnd = a, /2 A

Definition

Labeled union-find is an extension of union-find in which the relation between

elements is parametrized (labeled).
The labels have a composition operation that:

> |s invertible. » |s associative. » Has an identity element.

34/49

Equivalence modulo relocation |

The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, h, a) add_relation(c, k, a)
f add_relation(d, b, c f flnd = a, /2 A
Definition

Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

> |s invertible. » |s associative. » Has an identity element.

Forming a group with the labels.

34/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.

» Labels: linear polynomials.

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i)

i-f,

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d = relocate(c, j)

(2 ROIOy

i-f,

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d= relocate(c j) c = relocate(a, k)

@ /ff k-f,
()

&Y

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d= relocate(c j) c = relocate(a, k)

@ /ff k-f,
()

&Y

In the implementation, it also holds a domain:

O—r
01+ S
r— M : 1 1

On > Sp

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:
» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d= relocate(c j) c = relocate(a, k)

@ /ff k-f,
()

&Y

In the implementation, it also holds a domain:

0 r

01+ S
r— M : 1 1

U {(5, — S,/}
On > Sp

35/49

Equivalence modulo relocation I

In the labeled union-find used to represent equivalence modulo relocation:

» Nodes: n-sequences.
» Labels: linear polynomials.

» Composition operation: integer addition.

b = relocate(a, i) d= relocate(c j) c = relocate(a, k)

@ /ff k- f,
()

&Y

In the implementation, it also holds a domain:

0 r

01+ S
r— M : 1 1

On > Sp

U {61 — 5,/} — 6,’ € DOH’I(M) — 5./ = s

35/49

Outline

3. Implementation

e Constraint factorization

36/49

Constraint factorization

()

& B

37/49

Constraint factorization

()

01 02

37/49

Constraint factorization

()

61 02
{k1 — V1} {kz — VQ}

37/49

Constraint factorization

01 02

{k1 — V1} {kz — VQ}

) S =reloc

Get-Reloc (
i<faVig<i || fs§ <IsAv=get(r,i—fs+f,)

37/49

Constraint factorization

S =reloc

Get-Reloc

)
i<fVis<i || f<i<IAv=get(r,i—"fs+f,)

37/49

Constraint factorization

ki—wn ko = w
ko — vo — 0o + 01 ki—d1+6 —>wv

vV =) S =reloc I

get(s,
i<fVis<i | fs§ <IsAv=get(r,i—fs+f,)

Get-Reloc

37/49

Constraint factorization

61 N

{ke = w} {ko = v}
v = get(s, i s= r
Get-Reloc—— - get() reloc .
i<fVvis<i || f£<i<IAv=get(r,i—fs+f)

37/49

Constraint factorization

V=) S =reloc I

Get-Reloc

get(s,
i<fVis<i | fs§ <IsAv=get(r,i—fs+f,)

37/49

Constraint factorization

) S =reloc I

Get-Reloc (
i<faVig<i || fs§ <IsAv=get(r,i—fs+f,)

Also applies to NS-Comp-Reloc:

= k - k2 - kn S =reloc I

NS-Comp-Reloc
r= relocate(k1)

relocate(kp, fr, — s +1,)
relocate(k,, fx, — fs+fr)

37/49

Constraint factorization

To read more on how it is used in arithmetic reasoning:

> "Relational Abstractions Based on Labeled Union-Find"
Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and Francois
Bobot. PLDI 2025

37/49

Outline

3. Implementation

o Encoding sequences over n-Indexed Sequences

38/49

Encoding sequences over n-Indexed Sequences

39/49

Encoding sequences over n-Indexed Sequences

» Each sequences s: An n-sequence with f¢ =0 and I; > —1

39/49

Encoding sequences over n-Indexed Sequences

» Each sequences s: An n-sequence with fs =0 and s > —1

P> seq.empty: Represented by a special constant symbol ¢, an empty
n-sequence with f. =0 and I = —1.

39/49

Encoding sequences over n-Indexed Sequences

» Each sequences s: An n-sequence with fs =0 and s > —1

P> seq.empty: Represented by a special constant symbol ¢, an empty
n-sequence with f. =0 and I = —1.

» seq.++(s1,52,53, .-, 5n):

let(c1, concat(sy, relocate(sy, I, +1)),
let(cy, concat(cy, relocate(ss, I, +1)),

concat(c,—o, relocate(s, le,_, +1)))))

39/49

Outline

4. Experimental Evaluation

40/49

Experimental evaluation: context

» The experimentation was done on quantifier free sequence and n-sequence
benchmarks, containing only sequence and n-sequence operations.

» The experimentation compares implementations of NS-BASE, NS-EXT and
NS-ShS in Colibri2 with:

» Sequence support in cvch and Z3.
» Support for n-sequences encoded with ADTs and Sequences in cvch and Z3.

41/49

Experimental evaluation: UNSAT Seq

100 1

—— NS-BASE
— NS-EXT
—— NS-shs
--- s

cvc5-eager
L. e cvcs-lazy
— 3

Number of solved unsatisfiable goals

T T T T T T
0 50 100 150 200 250 300 350
Accumulated time in seconds

Figure: Number of solved goals by accumulated time (in
seconds) on unsatisfiable quantifier-free Sequence
benchmarks.

42/49

Experimental evaluation: SAT Seq

200 1

,_.

~

v
L

,_.

o

=}
L

Number of solved satisfiable goals

75 NS-BASE
— NS-EXT
—— N5-5hS

501 -—- s

cvc5-eager

a9 e cvcs-lazy

—_— 3
0 T T T T
0 100 200 300 400

Accumulated time in seconds

Figure: Number of solved goals by accumulated time (in
seconds) on satisfiable quantifier-free Sequence benchmarks.

43/49

Experimental evaluation: UNSAT NSeq

Y @ =3}
=} o =}
L L L

Number of solved unsatisfiable goals

~
o
L

NS-BASE
NS-EXT
NS-Shs
cvcs
cvc5-eager
cvcs-lazy
3

T T T T T
100 150 200 250 300
Accumulated time in seconds

T
350

Figure: Number of solved goals by accumulated time (in

seconds) on unsatisfiable quantifier-free n-Indexed Sequence

benchmarks.

44 /49

Experimental evaluation: SAT NSeq

200 1

175 A

150 4

125 4

100 A

Number of solved satisfiable goals
-~
G
|

w
=}
L

—— NS-BASE
—— NS-EXT
—— Ns-shs

N
w
.

T T T T T T
0 50 100 150 200 250 300
Accumulated time in seconds

Figure: Number of solved goals by accumulated time (in
seconds) on satisfiable quantifier-free n-Indexed Sequence
benchmarks.

45 /49

QOutline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
o Using existing theories
e Porting calculi on Sequences to n-Sequences
e The Shared-Slices calculus
o Reasoning over relocation

3. Implementation
o Context
o Equivalence modulo relocation
o Constraint factorization
e Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

46 /49

Conclusion

47 /49

Conclusion

Contributions presented in this talk:

» The theory of n-Indexed Sequences.

» Various ways to reason over it.
» Experimental evaluation.

47 /49

Conclusion

Contributions presented in this talk:
» The theory of n-Indexed Sequences.
» Various ways to reason over it.
» Experimental evaluation.
Additional contributions in the manuscript:
» Soundness proofs.
» |Implementation details and formalizations.

» Work on real and integer arithmetic reasoning.
(Labeled union-find for intervals and difference logic)

47 /49

Conclusion

Contributions presented in this talk:
» The theory of n-Indexed Sequences.
» Various ways to reason over it.
» Experimental evaluation.
Additional contributions in the manuscript:
» Soundness proofs.
» |Implementation details and formalizations.

» Work on real and integer arithmetic reasoning.
(Labeled union-find for intervals and difference logic)

Future work:

» Acquire more benchmarks
> Add (n-)sequences to Alt-Ergo

» Improve reasoning over n-sequences with quantifiers.

47 /49

Conclusion

Contributions presented in this talk:

> The theory of n-Indexed Sequences. Contributions to software:
» Various ways to reason over it. » Colibri2
» Experimental evaluation. > Alt-Ergo
Additional contributions in the manuscript: > Smtml
» Soundness proofs. > Dolmen
» SMT LSP

» |Implementation details and formalizations.

» Work on real and integer arithmetic reasoning.
(Labeled union-find for intervals and difference logic)

Future work:

» Acquire more benchmarks
> Add (n-)sequences to Alt-Ergo

» Improve reasoning over n-sequences with quantifiers.

47 /49

Conclusion

Contributions presented in this talk:

> The theory of n-Indexed Sequences. Contributions to software:
» Various ways to reason over it. » Colibri2
» Experimental evaluation. > Alt-Ergo
Additional contributions in the manuscript: > Smtml
» Soundness proofs. > Dolmen
» SMT LSP

» |Implementation details and formalizations.
» Work on real and integer arithmetic reasoning.
(Labeled union-find for intervals and difference logic)

Future work:

» Acquire more benchmarks
> Add (n-)sequences to Alt-Ergo

» Improve reasoning over n-sequences with quantifiers.
Other:

» Co-supervized an intern for 6 months (Félix
Loyau-Kahn, Master's student) on using Al for SMT
solver selection.

47 /49

Publications

» "On SMT Theory Design: The Case of Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot and Guillaume Bury. LPAR 2024
» "An SMT Theory for n-Indexed Sequences"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. SMT 2024
» '""Reasoning over n-indexed sequences in SMT"
Hichem Rami Ait-El-Hara, Francois Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)
» "Relational Abstractions Based on Labeled Union-Find"
Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and Francois
Bobot. PLDI 2025

"'Constraint Propagation for Bit-Vectors in Alt-Ergo"
Hichem Rami Ait-El-Hara, Guillaume Bury, Basile Clément, and Pierre
Villemot. SMT 2025

Preprints:

"Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml"

Jo3o Madeira Pereira, Filipe Marques, Pedro Ad3o, Hichem Rami Ait-El-Hara,
Léo Andres, Arthur Carcano, Pierre Chambart, Nuno Santos, and José Fragoso
Santos. To be submitted to TACAS 2026.

48 /49

Appendix 1: bibliography |

[Big+12] N Bjgrner et al. “An SMT-LIB Format for Sequences and Regular Expressions”.
In: Strings (Jan. 2012).

[CH15] Jirgen Christ and Jochen Hoenicke. “Weakly Equivalent Arrays”. In: Frontiers of
Combining Systems. Ed. by Carsten Lutz and Silvio Ranise. Cham: Springer
International Publishing, 2015, pp. 119-134. 1SBN: 978-3-319-24246-0. DOI:
10.1007/978-3-319-24246-0_8.

[MBO09] Leonardo Mendonca de Moura and Nikolaj S. Bjgrner. “Generalized, efficient
array decision procedures”. In: Proceedings of 9th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18 November
2009, Austin, Texas, USA. IEEE, 2009, pp. 45-52. por:
10.1109/FMCAD.2009.5351142.

[McC62] John McCarthy. “Towards a Mathematical Science of Computation”. In:
Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich,
Germany, August 27 - September 1, 1962. North-Holland, 1962, pp. 21-28.

[She+23] Ying Sheng et al. “Reasoning About Vectors: Satisfiability Modulo a Theory of
Sequences”. In: Journal of Automated Reasoning 67.3 (Sept. 2023), p. 32. ISSN:
1573-0670. DOI: 10.1007/s10817-023-09682-2.

49/ 49

https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/s10817-023-09682-2

Appendix

6. Labeled Union-Find for Arithmetic reasoning

7. NS-BASE and NS-EXT

1/4

Reduced Product

0. 1init: 1. assert (b<T):
[-5:5] a c [8;10) [-5;5] N [-50] = [-5:0] a c [8:16]
(s T e
2:12] b 3:11] 212)<7-[27 b d [3:11]

2. repr_change_hook(c, 10, b):

[=5:0] N [=2:0] — [-2:0] a <X ¢ [8:16] N [5:10] — [8;10]
7 —5
[2:7] N [5:7] = [%7] b d [#%11]n[3:5] — [3:5]
3. emnd:
[-2,0] a<ll . [8,10]
7)
5.7 b d [3.5]

Figure 6.4: Example of the usage of the constant difference relation for constraint propagation

over the domain of intervals.

2/4

Group Action

0. init: 1. assert (b<T):
[-5:5] a c
TT T—ﬁ 7 I—S
b d b d

2. repr_change_hooky, (c, 10, b):

[=5:0] N [-2:6] — [-2:0] a <0 ¢

1 b

Figure 6.5: Example of the usage of the constant difference relation for constraint factorization

over the domain of intervals.

[8;16] [=5:5]N] — 00; 0] = [-5;0] a c [8:16]

3/4

Normal forms

Definition (NSeq term normal form)

For simplicity, we introduce the concatenation operator :: with the invariant:

s—=susy = fs=f Nls=I1,Nf,, =15 +1

Normalization

The following rewriting rules are applied whenever possible:
S R — sly oz[
{ o spfe vz {5 [wi 2]y = 2] we)
X—yz X—yz
And if |, < f, is deduced:
s [wy]y oz w s [wy]z w
{ [wi =]y 2w . { [wi :]z[:: we]

X—=y.z Xtz

	The SMT theory of n-Indexed Sequences
	Reasoning over n-Indexed Sequences
	Using existing theories
	Porting calculi on Sequences to n-Sequences
	The Shared-Slices calculus
	Reasoning over relocation

	Implementation
	Context
	Equivalence modulo relocation
	Constraint factorization
	Encoding sequences over n-Indexed Sequences

	Experimental Evaluation
	Conclusion
	References
	Appendix
	Labeled Union-Find for Arithmetic reasoning
	NS-BASE and NS-EXT

