
PhD. Defense

Theory of Sequences
Tailored for Program Verification

Théorie des séquences adaptée à la vérification des programmes

by Hichem Rami AIT EL HARA1,2

Under the supervision of François BOBOT2and Guillaume BURY1

1OCamlPro
2Université Paris-Saclay, CEA, LIST

1 / 49

Software is everywhere

Personal information Energy

Aerospace Healthcare
2 / 49

And it can be faulty (bugged)

Ariane 5 ∗

(Arithmetic overflow)
Loss of over US$370 million

Therac-25 ∗∗

(Race condition)
Deaths and injuries of patients

More examples:
https://en.wikipedia.org/wiki/List_of_software_bugs

∗Photo: ©ESA
∗∗Figure from: “Medical Devices: The Therac-25” by Nancy G. Leveson

3 / 49

https://en.wikipedia.org/wiki/List_of_software_bugs

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post} ⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra

4 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)

▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)

▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)

▶ Alstom (Atelier B)

5 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

5 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (⊤, ⊥, 6, 3) = (⊤ ⇒ 6 > 5) ∧ (⊥ ⇒ 3 ≥ 4) ∧ (⊤ ∨ ⊥) ∧ (6 + 3 < 10)

∧ (p ⇔ q)
= ⊤ ∧ ⊤ ∧ ⊤ ∧ ⊤
= ⊤

Yes, therefore F is satisfiable.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (⊤, ⊥, 6, 3) = (⊤ ⇒ 6 > 5) ∧ (⊥ ⇒ 3 ≥ 4) ∧ (⊤ ∨ ⊥) ∧ (6 + 3 < 10)

∧ (p ⇔ q)
= ⊤ ∧ ⊤ ∧ ⊤ ∧ ⊤
= ⊤

Yes, therefore F is satisfiable.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (⊤, ⊥, 6, 3) = (⊤ ⇒ 6 > 5) ∧ (⊥ ⇒ 3 ≥ 4) ∧ (⊤ ∨ ⊥) ∧ (6 + 3 < 10)

∧ (p ⇔ q)

= ⊤ ∧ ⊤ ∧ ⊤ ∧ ⊤

= ⊤

Yes, therefore F is satisfiable.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (⊤, ⊥, 6, 3) = (⊤ ⇒ 6 > 5) ∧ (⊥ ⇒ 3 ≥ 4) ∧ (⊤ ∨ ⊥) ∧ (6 + 3 < 10)

∧ (p ⇔ q)

= ⊤ ∧ ⊤ ∧ ⊤ ∧ ⊤
= ⊤

Yes, therefore F is satisfiable.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (⊤, ⊥, 6, 3) = (⊤ ⇒ 6 > 5) ∧ (⊥ ⇒ 3 ≥ 4) ∧ (⊤ ∨ ⊥) ∧ (6 + 3 < 10)

∧ (p ⇔ q)

= ⊤ ∧ ⊤ ∧ ⊤ ∧ ⊤
= ⊤

Yes, therefore F is satisfiable.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

= (⊤ ⇒ x > 5) ∧ (⊤ ⇒ y ≥ 4) ∧ ⊤ ∧ (x + y < 10) ∧ ⊤
= (x > 5) ∧ (y ≥ 4) ∧ (x + y < 10)
= ⊥

No, therefore F is unsatisfiable. Inversely ¬F is valid.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)
= (⊤ ⇒ x > 5) ∧ (⊤ ⇒ y ≥ 4) ∧ ⊤ ∧ (x + y < 10) ∧ ⊤

= (x > 5) ∧ (y ≥ 4) ∧ (x + y < 10)
= ⊥

No, therefore F is unsatisfiable. Inversely ¬F is valid.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)
= (⊤ ⇒ x > 5) ∧ (⊤ ⇒ y ≥ 4) ∧ ⊤ ∧ (x + y < 10) ∧ ⊤
= (x > 5) ∧ (y ≥ 4) ∧ (x + y < 10)

= ⊥

No, therefore F is unsatisfiable. Inversely ¬F is valid.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)
= (⊤ ⇒ x > 5) ∧ (⊤ ⇒ y ≥ 4) ∧ ⊤ ∧ (x + y < 10) ∧ ⊤
= (x > 5) ∧ (y ≥ 4) ∧ (x + y < 10)
= ⊥

No, therefore F is unsatisfiable. Inversely ¬F is valid.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)
= (⊤ ⇒ x > 5) ∧ (⊤ ⇒ y ≥ 4) ∧ ⊤ ∧ (x + y < 10) ∧ ⊤
= (x > 5) ∧ (y ≥ 4) ∧ (x + y < 10)
= ⊥

No, therefore F is unsatisfiable.

Inversely ¬F is valid.

6 / 49

What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)

Question: is there a satisfying interpretation?

F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10) ∧ (p ⇔ q)
= (⊤ ⇒ x > 5) ∧ (⊤ ⇒ y ≥ 4) ∧ ⊤ ∧ (x + y < 10) ∧ ⊤
= (x > 5) ∧ (y ≥ 4) ∧ (x + y < 10)
= ⊥

No, therefore F is unsatisfiable. Inversely ¬F is valid.
6 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

7 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)

▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

7 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)

▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

7 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

7 / 49

Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)

8 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers

Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming

Booleans
Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming

Booleans
Integers
Reals

Arrays

BVs

FP Numbers
ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming

Booleans
Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming

Booleans
Integers
Reals

Arrays

BVs
FP Numbers

ADTs

Strings
Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming

Booleans
Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics

Programming

Booleans
Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

9 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

Operations select and store. len, nth, extract, concat,
update and others.

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

Operations select and store. len, nth, extract, concat,
update and others.

Pros Widely explored
[CH15; MB09] Expressiveness

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

Operations select and store. len, nth, extract, concat,
update and others.

Pros Widely explored
[CH15; MB09] Expressiveness

Cons – Lack of expressiveness
– Fixed size

– Scarce literature
– Few solvers support it

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

Operations select and store. len, nth, extract, concat,
update and others.

Pros Widely explored
[CH15; MB09] Expressiveness

Cons – Lack of expressiveness
– Fixed size

– Scarce literature
– Few solvers support it

For the following data structures from programming languages:

▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

Operations select and store. len, nth, extract, concat,
update and others.

Pros Widely explored
[CH15; MB09] Expressiveness

Cons – Lack of expressiveness
– Fixed size

– Scarce literature
– Few solvers support it

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.

10 / 49

Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

Sort Array I E Seq E

Structure


. . .

in 7→ en
in+1 7→ en+1
in+2 7→ en+2

. . .

 [e0; e1; e2; . . . ; el−1]

Operations select and store. len, nth, extract, concat,
update and others.

Pros Widely explored
[CH15; MB09] Expressiveness

Cons – Lack of expressiveness
– Fixed size

– Scarce literature
– Few solvers support it

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.
10 / 49

In this thesis: A different theory of Sequences

Context:

▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation

▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.

11 / 49

In this thesis: A different theory of Sequences

Context:
▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.

▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation

▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.

11 / 49

In this thesis: A different theory of Sequences

Context:
▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation

▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.

11 / 49

In this thesis: A different theory of Sequences

Context:
▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation

▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.

11 / 49

In this thesis: A different theory of Sequences

Context:
▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation

▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.

11 / 49

In this thesis: A different theory of Sequences

Context:
▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation
▶ Conveniently represent and efficiently reason over n-indexed sequences.

▶ A generalization of the theory of sequences.

11 / 49

In this thesis: A different theory of Sequences

Context:
▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation
▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.

11 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences

3. Implementation

4. Experimental Evaluation

5. Conclusion

12 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

13 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.

Empty n-indexed sequence
An n-indexed sequence s is said to be empty if ls < fs . Two empty n-indexed
sequences a and b are equal only if fa = fb and la = lb.

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.

Empty n-indexed sequence
An n-indexed sequence s is said to be empty if ls < fs . Two empty n-indexed
sequences a and b are equal only if fa = fb and la = lb.

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.

s
ls

fs

i → v

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.

s
ls

fs

i →

v

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.
▶ set(s, i , v): if fs ≤ i ≤ ls returns a copy of s in which i is associated to v ,

otherwise returns s.

▶ const(f , l , v): an n-indexed sequence with f as a first index, l as a last
index and all its elements are v .

▶ relocate(s, f): a copy of s relocated to the index f .

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.
▶ set(s, i , v): if fs ≤ i ≤ ls returns a copy of s in which i is associated to v ,

otherwise returns s.

▶ const(f , l , v): an n-indexed sequence with f as a first index, l as a last
index and all its elements are v .

▶ relocate(s, f): a copy of s relocated to the index f .

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.
▶ set(s, i , v): if fs ≤ i ≤ ls returns a copy of s in which i is associated to v ,

otherwise returns s.

▶ const(f , l , v): an n-indexed sequence with f as a first index, l as a last
index and all its elements are v .

▶ relocate(s, f): a copy of s relocated to the index f .

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.
▶ set(s, i , v): if fs ≤ i ≤ ls returns a copy of s in which i is associated to v ,

otherwise returns s.
▶ const(f , l , v): an n-indexed sequence with f as a first index, l as a last

index and all its elements are v .

▶ relocate(s, f): a copy of s relocated to the index f .

14 / 49

Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.
▶ get(s, i): if fs ≤ i ≤ ls returns the ith element of s, otherwise it is

uninterpreted.
▶ set(s, i , v): if fs ≤ i ≤ ls returns a copy of s in which i is associated to v ,

otherwise returns s.
▶ const(f , l , v): an n-indexed sequence with f as a first index, l as a last

index and all its elements are v .
▶ relocate(s, f): a copy of s relocated to the index f .

14 / 49

Semantics of the theory of n-Indexed Sequences II

▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.

▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

To read more on SMT theory design and semantic choices:
▶ "On SMT Theory Design: The Case of Sequences"

Hichem Rami Ait-El-Hara, François Bobot and Guillaume Bury. LPAR 2024

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

▶ slice(a, f , l): if fa ≤ f ≤ l ≤ la returns a new n-indexed sequence that has
the same elements as a within the bounds f and l , otherwise returns a.

Extensionality
The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a = b) ≡
(fa = fb ∧ la = lb ∧

∀i : Int, fa ≤ i ≤ la → get(a, i) = get(b, i))

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

▶ slice(a, f , l): if fa ≤ f ≤ l ≤ la returns a new n-indexed sequence that has
the same elements as a within the bounds f and l , otherwise returns a.

Extensionality
The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a = b) ≡
(fa = fb ∧ la = lb ∧

∀i : Int, fa ≤ i ≤ la → get(a, i) = get(b, i))

15 / 49

Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

▶ slice(a, f , l): if fa ≤ f ≤ l ≤ la returns a new n-indexed sequence that has
the same elements as a within the bounds f and l , otherwise returns a.

Extensionality
The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a = b) ≡
(fa = fb ∧ la = lb ∧

∀i : Int, fa ≤ i ≤ la → get(a, i) = get(b, i))

15 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

16 / 49

Axiomatization/Encoding of n-Sequences

Axiomatization (with arrays):
▶ Most operations need to be axiomatized.
▶ Introduces too many quantified formulas.

Encoding using Sequences and Algebraic Data Types:
▶ Avoids using as many quantifiers.
▶ Depends on two other theories (Sequences and ADTs).
▶ Differences in the semantics make the definitions complex.

17 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst

and ln = n.fst + len(n.seq) − 1

▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:

▶ fn = n.fst

and ln = n.fst + len(n.seq) − 1

▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst

and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1

▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:
▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

19 / 49

Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23],

which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:

▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.

▶ EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.

s ′ = set(s, i , v)

s

s ′

s = k1 :: k2 :: k3

s ′ = k1 :: const(i , i , v) :: k3

s k1 k2 k3

s ′ k1

const(i , i , v)

k3

▶ EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.

s ′ = set(s, i , v)

s

s ′

s = k1 :: k2 :: k3

s ′ = k1 :: const(i , i , v) :: k3

s k1 k2 k3

s ′ k1

const(i , i , v)

k3

▶ EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.

s = w :: y1 :: z1

s = w :: y2 :: z2

s w

s w

y1 z1

y2 z2

y1 = y2 :: k & z2 = k :: z1

s = w :: y2 :: k :: z1

s w y2 k z1

s w y2 z2

▶ EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.

s = w :: y1 :: z1

s = w :: y2 :: z2

s w

s w

y1 z1

y2 z2

y1 = y2 :: k & z2 = k :: z1

s = w :: y2 :: k :: z1

s w y2 k z1

s w y2 z2

▶ EXT: combines array-like reasoning (for get and set) with string like
reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.
▶ Adapts array axioms to sequences (idx,select-over-store)

▶ Propagates get and set operations to normal forms.
Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.
▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.
▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:

▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.
▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index

▶ Reasoning over the relocation of n-indexed sequences
To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.
▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Porting calculi on Sequences to n-Sequences
Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.
▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

20 / 49

Calculi Summary: NS-BASE and NS-EXT

Operations NS-BASE NS-EXT

get
set

String
reasoning

Array reasoning

concat
slice

update
. . .

String
reasoning

String
reasoning

Limitations:
▶ Eager normalization is often costly and sometimes unnecessary.

Alternative:
▶ A new calculus that lazily reasons over slices.

21 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

22 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:

▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:
▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:
▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:
▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||

fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧
get(s2, i) = v ∧ s1

{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:
▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:
▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:
▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v

23 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:

s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||

fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49

The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:
▶ s = s ′.

s s ′

f

l

24 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Illustration
s1 s2

K
vi

25 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||

∃j ∈ K . i = j ||
fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Illustration
s1 s2

K
vi

25 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Illustration
s1 s2

K
vi

25 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Illustration
s1 s2

K

vi vi

25 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Get-Over-ShS
v = get(s1, i) s1 =[f ;l] s2

i < f ∨ i > l ||
f ≤ i ≤ l ∧ get(s2, i) = v

Illustration
s1 s2

f

l

25 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Get-Over-ShS
v = get(s1, i) s1 =[f ;l] s2

i < f ∨ i > l ||

f ≤ i ≤ l ∧ get(s2, i) = v

Illustration
s1 s2

f

l
vi

25 / 49

Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Get-Over-ShS
v = get(s1, i) s1 =[f ;l] s2

i < f ∨ i > l ||
f ≤ i ≤ l ∧ get(s2, i) = v

Illustration
s1 s2

f

l vi vi

25 / 49

Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||
∃k ∈ K . fs1 ≤ k ≤ ls1 ∧ get(s1, k) ̸= get(s2, k) ∧

∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧
s1 ̸= s2

Illustration
s1 s2

K

k get(s1, k) get(s2, k)f

l

26 / 49

Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||

∃k ∈ K . fs1 ≤ k ≤ ls1 ∧ get(s1, k) ̸= get(s2, k) ∧
∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧

s1 ̸= s2

Illustration
s1 s2

K

k get(s1, k) get(s2, k)f

l

26 / 49

Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||
∃k ∈ K . fs1 ≤ k ≤ ls1 ∧

get(s1, k) ̸= get(s2, k) ∧
∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧

s1 ̸= s2

Illustration
s1 s2

K
k

get(s1, k) get(s2, k)f

l

26 / 49

Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||
∃k ∈ K . fs1 ≤ k ≤ ls1 ∧ get(s1, k) ̸= get(s2, k) ∧

∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧
s1 ̸= s2

Illustration
s1 s2

K
k get(s1, k) get(s2, k)

f

l

26 / 49

Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||
∃k ∈ K . fs1 ≤ k ≤ ls1 ∧ get(s1, k) ̸= get(s2, k) ∧

∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧

s1 ̸= s2

Illustration
s1 s2

K
k get(s1, k) get(s2, k)f

l

26 / 49

Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||
∃k ∈ K . fs1 ≤ k ≤ ls1 ∧ get(s1, k) ̸= get(s2, k) ∧

∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧
s1 ̸= s2

Illustration
s1 s2

K
k get(s1, k) get(s2, k)f

l

26 / 49

Calculi Summary: NS-BASE, NS-EXT and NS-ShS

Operations NS-BASE NS-EXT NS-ShS

get
set

String
reasoning

Array reasoning Array reasoning

concat
slice

update
. . .

String
reasoning

String
reasoning

Lazy
(Shared-slices)

reasoning

27 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

28 / 49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)

i = fs ∧s ′ = s ||
i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧

s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29 / 49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)

i = fs ∧s ′ = s ||
i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧

s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29 / 49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)
i = fs ∧s ′ = s ||

i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧
s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29 / 49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)
i = fs ∧s ′ = s ||

i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧

s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29 / 49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)
i = fs ∧s ′ = s ||

i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧
s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29 / 49

Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)
i = fs ∧s ′ = s ||

i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧
s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.

29 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i ||

fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.

▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.

30 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

31 / 49

Implementation context

NS-Base, NS-Ext and NS-ShS were implemented in Colibri2:
▶ A reimplementation in OCaml of the COLIBRI CP solver.
▶ A CP solver used to reason over SMT problems.
▶ That does not use a SAT solver or clause learning.
▶ Compensates with (abstract) domains, propagations and scheduling.

32 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

33 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

a

b

union(c, d)

a

b

c

d

union(c,a)

a

b

c

d

find(d) = a

a

b c d

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

a

b

union(c, d)

a

b

c

d

union(c,a)

a

b

c

d

find(d) = a

a

b c d

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

a

b

union(c, d)

a

b

c

d

union(c,a)

a

b

c

d

find(d) = a

a

b c d

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

a

b

union(c, d)

a

b

c

d

union(c,a)

a

b

c

d

find(d) = a

a

b c d

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

a

b

union(c, d)

a

b

c

d

union(c,a)

a

b

c

d

find(d) = a

a

b c d

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a,

l2 · l3

a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1

add_relation(d, l2, c)
a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a,

l2 · l3

a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a,

l2 · l3

a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a,

l2 · l3

a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a,

l2 · l3

a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a, l2 · l3
a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a, l2 · l3
a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

▶ Is invertible.

▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a, l2 · l3
a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

▶ Is invertible. ▶ Is associative.

▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a, l2 · l3
a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.

34 / 49

Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

add_relation(b, l1, a)
a

b

l1
add_relation(d, l2, c)

a

b

l1
c

d

l2

add_relation(c, l3, a)
a

b

l1 c

d

l3

l2

find(d) = a, l2 · l3
a

b

l1 c

d

l3

l2 · l3

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).
The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.
34 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:

▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.

▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.

▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn

 ∪ {δi 7→ s ′
i }

→ δi ∈ Dom(M) =⇒ s ′
i = si

35 / 49

Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:
▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn

 ∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si

35 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

36 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1}

{k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2{
k1 → v1

k2 → v2 − δ2 + δ1

} {
k2 → v2

k1 − δ1 + δ2 → v1

}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)

37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr)

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr) ::
relocate(k2, fk2 − fs + fr) :: ... ::

relocate(kn, fkn − fs + fr)
37 / 49

Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

To read more on how it is used in arithmetic reasoning:
▶ "Relational Abstractions Based on Labeled Union-Find"

Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François
Bobot. PLDI 2025

37 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

38 / 49

Encoding sequences over n-Indexed Sequences

▶ Each sequences s: An n-sequence with fs = 0 and ls ≥ −1
▶ seq.empty: Represented by a special constant symbol ϵ, an empty

n-sequence with fϵ = 0 and lϵ = −1.
▶ seq.++(s1, s2, s3, . . . , sn):

let
(
c1, concat(s1, relocate(s2, ls1 +1)),

let(c2, concat(c1, relocate(s3, lc1 +1)),
. . .

concat(cn−2, relocate(sn, lcn−2 +1))))
)

39 / 49

Encoding sequences over n-Indexed Sequences

▶ Each sequences s: An n-sequence with fs = 0 and ls ≥ −1

▶ seq.empty: Represented by a special constant symbol ϵ, an empty
n-sequence with fϵ = 0 and lϵ = −1.

▶ seq.++(s1, s2, s3, . . . , sn):

let
(
c1, concat(s1, relocate(s2, ls1 +1)),

let(c2, concat(c1, relocate(s3, lc1 +1)),
. . .

concat(cn−2, relocate(sn, lcn−2 +1))))
)

39 / 49

Encoding sequences over n-Indexed Sequences

▶ Each sequences s: An n-sequence with fs = 0 and ls ≥ −1
▶ seq.empty: Represented by a special constant symbol ϵ, an empty

n-sequence with fϵ = 0 and lϵ = −1.

▶ seq.++(s1, s2, s3, . . . , sn):

let
(
c1, concat(s1, relocate(s2, ls1 +1)),

let(c2, concat(c1, relocate(s3, lc1 +1)),
. . .

concat(cn−2, relocate(sn, lcn−2 +1))))
)

39 / 49

Encoding sequences over n-Indexed Sequences

▶ Each sequences s: An n-sequence with fs = 0 and ls ≥ −1
▶ seq.empty: Represented by a special constant symbol ϵ, an empty

n-sequence with fϵ = 0 and lϵ = −1.
▶ seq.++(s1, s2, s3, . . . , sn):

let
(
c1, concat(s1, relocate(s2, ls1 +1)),

let(c2, concat(c1, relocate(s3, lc1 +1)),
. . .

concat(cn−2, relocate(sn, lcn−2 +1))))
)

39 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

40 / 49

Experimental evaluation: context

▶ The experimentation was done on quantifier free sequence and n-sequence
benchmarks, containing only sequence and n-sequence operations.

▶ The experimentation compares implementations of NS-BASE, NS-EXT and
NS-ShS in Colibri2 with:
▶ Sequence support in cvc5 and Z3.
▶ Support for n-sequences encoded with ADTs and Sequences in cvc5 and Z3.

41 / 49

Experimental evaluation: UNSAT Seq

Figure: Number of solved goals by accumulated time (in
seconds) on unsatisfiable quantifier-free Sequence
benchmarks.

42 / 49

Experimental evaluation: SAT Seq

Figure: Number of solved goals by accumulated time (in
seconds) on satisfiable quantifier-free Sequence benchmarks.

43 / 49

Experimental evaluation: UNSAT NSeq

Figure: Number of solved goals by accumulated time (in
seconds) on unsatisfiable quantifier-free n-Indexed Sequence
benchmarks.

44 / 49

Experimental evaluation: SAT NSeq

Figure: Number of solved goals by accumulated time (in
seconds) on satisfiable quantifier-free n-Indexed Sequence
benchmarks.

45 / 49

Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

46 / 49

Conclusion

Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)
Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP

47 / 49

Conclusion
Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)
Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP

47 / 49

Conclusion
Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)

Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP

47 / 49

Conclusion
Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)
Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP

47 / 49

Conclusion
Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)
Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP

47 / 49

Conclusion
Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)
Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP

47 / 49

Publications
▶ "On SMT Theory Design: The Case of Sequences"

Hichem Rami Ait-El-Hara, François Bobot and Guillaume Bury. LPAR 2024
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)

▶ "Relational Abstractions Based on Labeled Union-Find"
Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François
Bobot. PLDI 2025

▶ "Constraint Propagation for Bit-Vectors in Alt-Ergo"
Hichem Rami Ait-El-Hara, Guillaume Bury, Basile Clément, and Pierre
Villemot. SMT 2025

Preprints:
▶ "Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml"

João Madeira Pereira, Filipe Marques, Pedro Adão, Hichem Rami Ait-El-Hara,
Léo Andrès, Arthur Carcano, Pierre Chambart, Nuno Santos, and José Fragoso
Santos. To be submitted to TACAS 2026.

48 / 49

Appendix 1: bibliography I
[Bjø+12] N Bjørner et al. “An SMT-LIB Format for Sequences and Regular Expressions”.

In: Strings (Jan. 2012).

[CH15] Jürgen Christ and Jochen Hoenicke. “Weakly Equivalent Arrays”. In: Frontiers of
Combining Systems. Ed. by Carsten Lutz and Silvio Ranise. Cham: Springer
International Publishing, 2015, pp. 119–134. isbn: 978-3-319-24246-0. doi:
10.1007/978-3-319-24246-0_8.

[MB09] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. “Generalized, efficient
array decision procedures”. In: Proceedings of 9th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18 November
2009, Austin, Texas, USA. IEEE, 2009, pp. 45–52. doi:
10.1109/FMCAD.2009.5351142.

[McC62] John McCarthy. “Towards a Mathematical Science of Computation”. In:
Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich,
Germany, August 27 - September 1, 1962. North-Holland, 1962, pp. 21–28.

[She+23] Ying Sheng et al. “Reasoning About Vectors: Satisfiability Modulo a Theory of
Sequences”. In: Journal of Automated Reasoning 67.3 (Sept. 2023), p. 32. issn:
1573-0670. doi: 10.1007/s10817-023-09682-2.

49 / 49

https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/s10817-023-09682-2

Appendix

6. Labeled Union-Find for Arithmetic reasoning

7. NS-BASE and NS-EXT

1 / 4

Reduced Product

2 / 4

Group Action

3 / 4

Normal forms

Definition (NSeq term normal form)
For simplicity, we introduce the concatenation operator :: with the invariant:

s 7→ s1 :: s2 =⇒ fs = fs1 ∧ ls = ls2 ∧ fs2 = ls1 +1

Normalization
The following rewriting rules are applied whenever possible:{

s 7→ [w1 ::]x [:: w2]
x 7→ y :: z

−→

{
s 7→ [w1 ::]y :: z [:: w2]
x 7→ y :: z

And if ly < fy is deduced:{
s 7→ [w1 ::]y :: z [:: w2]
x 7→ y :: z

−→

{
s 7→ [w1 ::]z [:: w2]
x 7→ z

4 / 4

	The SMT theory of n-Indexed Sequences
	Reasoning over n-Indexed Sequences
	Using existing theories
	Porting calculi on Sequences to n-Sequences
	The Shared-Slices calculus
	Reasoning over relocation

	Implementation
	Context
	Equivalence modulo relocation
	Constraint factorization
	Encoding sequences over n-Indexed Sequences

	Experimental Evaluation
	Conclusion
	References
	Appendix
	Labeled Union-Find for Arithmetic reasoning
	NS-BASE and NS-EXT

