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Software is everywhere

Personal information Energy

Aerospace Healthcare
2 / 49



And it can be faulty (bugged)

Ariane 5 ∗

(Arithmetic overflow)
Loss of over US$370 million

Therac-25 ∗∗

(Race condition)
Deaths and injuries of patients

More examples:
https://en.wikipedia.org/wiki/List_of_software_bugs

∗Photo: ©ESA
∗∗Figure from: “Medical Devices: The Therac-25” by Nancy G. Leveson
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Behind the software, there are programs.

Inputs I Program G Outputs O

I0

I1

I2

...

O0

O1

O2

...

O′
1

Bug
x

Testing

?= O0

?= O1
?= O2

= ∞

Deductive Verification

Pre G Post

{Pre}G{Post}

⇒ Ψ (proven?)

"Program testing can be used to show the presence of bugs, but never
to show their absence!" - Edsger W. Dijkstra
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Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

Logical formulas

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)
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What is SMT (Satisfiability Modulo Theories)?

Definition
Boolean Satisfiability (Propositional Logic)

+
Built-in First-Order Logic Theories

Example
F (p, q, x , y) = (p ⇒ x > 5) ∧ (q ⇒ y ≥ 4) ∧ (p ∨ q) ∧ (x + y < 10)

∧ (p ⇔ q)
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Why are SMT solvers used?

▶ Expressiveness (Quantifies and various theories)
▶ Efficiency (Combination of powerful decision procedures)
▶ The SMT-LIB (Standard language and theories)

Standard Theories

Mathematics Programming
Booleans

Integers
Reals
Arrays

BVs
FP Numbers

ADTs
Strings

Sequences
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Avoiding Bugs in the Real World

Frama-C/WP

C

TIS-Analyser/J3

SPARK

Ada

Creusot

Rust

Why3

SMT solvers:
Alt-Ergo, Colibri2,

cvc5, Z3, Yices2 ...

Dafny

Owi

SmtML

Wasm

KLEE

LLVM

BINSEC

SeaCoral

Atelier B

...

In the industry:

▶ AirBus (Frama-C/WP)
▶ NVIDIA (SPARK)

▶ Mitsubishi Electric (TIS-Analyzer)
▶ Thales (Frama-C/WP & SeaCoral)
▶ Alstom (Atelier B)
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Arrays and Sequences in SMT
Arrays [McC62] Sequences [Bjø+12]

For the following data structures from programming languages:
▶ Arrays (OCaml, C)
▶ Vectors (Rust, C++)

▶ ArrayLists (Java)
▶ Lists (Python)

Sequences are more suitable as they are semantically closer.
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In this thesis: A different theory of Sequences

Context:

▶ In Ada/Spark: sequences can be defined over an arbitrary range of integers.
▶ Encoding them in SMT is cumbersome and inefficient.

n-Indexed Sequences
An n-indexed sequence (or n-sequence) s is a sequence that is indexed from a
first index fs to a last index ls .

Motivation

▶ Conveniently represent and efficiently reason over n-indexed sequences.
▶ A generalization of the theory of sequences.
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Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
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4. Experimental Evaluation
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The Shared-Slices calculus
Reasoning over relocation

3. Implementation
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Semantics of the theory of n-Indexed Sequences I

▶ fs and ls : the first and last index of s.

Empty n-indexed sequence
An n-indexed sequence s is said to be empty if ls < fs . Two empty n-indexed
sequences a and b are equal only if fa = fb and la = lb.
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Semantics of the theory of n-Indexed Sequences II

▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one
another, otherwise returns a.

▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.

▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that
has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

Example

a

b
result

a

b
result

a

b
result

In the theory of sequences (in cvc5) update(a, i , b):

a

b
result

a

b
result

a

b
result

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

To read more on SMT theory design and semantic choices:
▶ "On SMT Theory Design: The Case of Sequences"

Hichem Rami Ait-El-Hara, François Bobot and Guillaume Bury. LPAR 2024

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

▶ slice(a, f , l): if fa ≤ f ≤ l ≤ la returns a new n-indexed sequence that has
the same elements as a within the bounds f and l , otherwise returns a.

Extensionality
The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a = b) ≡
(fa = fb ∧ la = lb ∧

∀i : Int, fa ≤ i ≤ la → get(a, i) = get(b, i))

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

▶ slice(a, f , l): if fa ≤ f ≤ l ≤ la returns a new n-indexed sequence that has
the same elements as a within the bounds f and l , otherwise returns a.

Extensionality
The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a = b) ≡
(fa = fb ∧ la = lb ∧

∀i : Int, fa ≤ i ≤ la → get(a, i) = get(b, i))

15 / 49



Semantics of the theory of n-Indexed Sequences II
▶ concat(a, b): Concatenates two non-empty n-sequences if they follow one

another, otherwise returns a.
▶ update(a, b): if fa ≤ fb ≤ lb ≤ la returns a new n-indexed sequence that

has the same elements as b within the bounds of b and the same elements
as a within the bounds of a and outside those of b, otherwise returns a.

▶ slice(a, f , l): if fa ≤ f ≤ l ≤ la returns a new n-indexed sequence that has
the same elements as a within the bounds f and l , otherwise returns a.

Extensionality
The theory of n-indexed sequences is extensional. Therefore, given two
n-indexed sequences a and b:

(a = b) ≡
(fa = fb ∧ la = lb ∧

∀i : Int, fa ≤ i ≤ la → get(a, i) = get(b, i))

15 / 49



Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

16 / 49



Axiomatization/Encoding of n-Sequences

Axiomatization (with arrays):
▶ Most operations need to be axiomatized.
▶ Introduces too many quantified formulas.

Encoding using Sequences and Algebraic Data Types:
▶ Avoids using as many quantifiers.
▶ Depends on two other theories (Sequences and ADTs).
▶ Differences in the semantics make the definitions complex.

17 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst

and ln = n.fst + len(n.seq) − 1

▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:

▶ fn = n.fst

and ln = n.fst + len(n.seq) − 1

▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst

and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1

▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:

▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Reasoning with Sequences and Algebraic Data Types I

n-Indexed sequences are defined as a record:

NSeq(a) = {seq : Seq(a); fst : Int}

Other symbols of the theory are defined over it:
▶ fn = n.fst and ln = n.fst + len(n.seq) − 1
▶ get(n, i) = nth(n.seq, i − n.fst)

Except const(f , l , v), which has no counterpart in the theory of sequences:
▶ It can be axiomatized:

n = const(f , l , v) ⇐⇒ fn = f ∧ ln = l∧
∀i . f ≤ i ≤ l =⇒ get(n, i) = v

18 / 49



Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

19 / 49



Porting calculi on Sequences to n-Sequences

Based on the paper "Reasoning About Vectors: Satisfiability Modulo a Theory
of Sequences" by Sheng et al. [She+23], which presents two calculi:
▶ BASE: based on string reasoning, works by reducing to concatenations.
▶ EXT: combines array-like reasoning (for get and set) with string like

reasoning for other operations.

▶ Adapts array axioms to sequences (idx,select-over-store)
▶ Propagates get and set operations to normal forms.

Contribution:
The adapted versions are called NS-BASE and NS-EXT, with the changes:
▶ The bounds of n-sequences are between the first and the last index
▶ Reasoning over the relocation of n-indexed sequences

To read more on NS-BASE and NS-EXT:
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
Informatica 62.3 (Aug. 2025)
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Informatica 62.3 (Aug. 2025)
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Calculi Summary: NS-BASE and NS-EXT

Operations NS-BASE NS-EXT

get
set

String
reasoning

Array reasoning

concat
slice

update
. . .

String
reasoning

String
reasoning

Limitations:
▶ Eager normalization is often costly and sometimes unnecessary.

Alternative:
▶ A new calculus that lazily reasons over slices.

21 / 49



Outline

1. The SMT theory of n-Indexed Sequences

2. Reasoning over n-Indexed Sequences
Using existing theories
Porting calculi on Sequences to n-Sequences
The Shared-Slices calculus
Reasoning over relocation

3. Implementation
Context
Equivalence modulo relocation
Constraint factorization
Encoding sequences over n-Indexed Sequences

4. Experimental Evaluation

5. Conclusion

22 / 49



The Shared-Slices (NS-ShS) Calculus I
Consists of representing operations over n-sequences as relations:

▶ Weak-equivalence relations [CH15].

Set-Bound-WEq
s2 = set(s1, i , v)

(i < fs1 ∨i > ls1) ∧ s1 = s2 ||
fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧

get(s2, i) = v ∧ s1
{i}↔ s2

Illustration

Given s3 = set(s2, j , u),
With fs2 ≤ j ≤ ls2 :
▶ fs2 = fs3 ∧ ls2 = ls3

▶ s1
{i,j}↔ s3

s1 s2

i v

s3

j u

v
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The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:

s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49



The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49



The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49



The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||

fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49



The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49



The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:

▶ s = s ′.

s s ′

f

l

24 / 49



The Shared-Slices (NS-ShS) Calculus II

▶ The shared-slice relation:
s1 =[f ;l] s2 =⇒ ∀i . f ≤ i ≤ l =⇒ get(s1, i) = get(s2, i)

Slice-ShS-Intro
s ′ = slice(s, f , l)

(fs > ls ∨f > l ∨ fs > f ∨ l > ls) ∧ s = s ′ ||
fs ≤ f ≤ l ≤ ls ∧ fs′ = f ∧ ls′ = l ∧ s =[f ;l] s ′

Illustration

if fs = f ∧ ls = l then:
▶ s = s ′.

s s ′

f

l

24 / 49



Reasoning over weak-equivalency and shared-slices

Get-Over-WEq
get(s1, i) = v s1

K↔ s2

i < fs1 ∨i > ls1 ||
∃j ∈ K . i = j ||

fs1 ≤ i ≤ ls1 ∧(∀j ∈ K . i ̸= j) ∧ get(s2, i) = v

Illustration
s1 s2

K
vi
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Extensionality with NS-ShS

Ext-ShS
s1

K↔ s2

s1 = s2 ||
∃k ∈ K . fs1 ≤ k ≤ ls1 ∧ get(s1, k) ̸= get(s2, k) ∧

∀f , l . s1 =[f ;l] s2 =⇒ k < f ∨ k > l ∧
s1 ̸= s2

Illustration
s1 s2

K

k get(s1, k) get(s2, k)f

l
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Calculi Summary: NS-BASE, NS-EXT and NS-ShS

Operations NS-BASE NS-EXT NS-ShS

get
set

String
reasoning

Array reasoning Array reasoning

concat
slice

update
. . .

String
reasoning

String
reasoning

Lazy
(Shared-slices)

reasoning
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Porting calculi on Sequences to n-Sequences
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3. Implementation
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Reasoning over relocation 1

Definition (Equivalence modulo relocation)
Given s1 and s2 two n-indexed sequences, equivalence modulo relocation is
denoted with the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧

∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i − fs1 + fs2)

Reloc-Bounds
s ′ = relocate(s, i)

i = fs ∧s ′ = s ||
i ̸= fs ∧ fs′ = i ∧ ls′ = i + ls − fs ∧

s ′ =reloc s

This reasoning is used for all the three calculi: NS-BASE, NS-EXT and NS-ShS.
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Reasoning over relocation 2

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr ) ::
relocate(k2, fk2 − fs + fr ) :: ... ::

relocate(kn, fkn − fs + fr )

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr )

▶ Applying NS-Comp-Reloc and Get-Reloc eagerly can be costly.
▶ Our extension to the union-find data structure helps mitigate that.
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Implementation context

NS-Base, NS-Ext and NS-ShS were implemented in Colibri2:
▶ A reimplementation in OCaml of the COLIBRI CP solver.
▶ A CP solver used to reason over SMT problems.
▶ That does not use a SAT solver or clause learning.
▶ Compensates with (abstract) domains, propagations and scheduling.
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Equivalence modulo relocation I
The equivalence modulo relocation relation is represented using a labeled
union-find.

union(a, b)

a

b

union(c, d)

a

b

c

d

union(c,a)

a

b

c

d

find(d) = a

a

b c d

Definition
Labeled union-find is an extension of union-find in which the relation between
elements is parametrized (labeled).

The labels have a composition operation that:

▶ Is invertible. ▶ Is associative. ▶ Has an identity element.

Forming a group with the labels.
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Equivalence modulo relocation II
In the labeled union-find used to represent equivalence modulo relocation:

▶ Nodes: n-sequences.
▶ Labels: linear polynomials.
▶ Composition operation: integer addition.

b = relocate(a, i)

a

b

i - fa

d = relocate(c, j)

a

b

c

d

i - fa j - fc

c = relocate(a, k)

ab c

d

i − fa k - fa

k + j - fa - fc

In the implementation, it also holds a domain:

r 7→ M :


0 7→ r

δ1 7→ s1
. . .

δn 7→ sn



∪ {δi 7→ s ′
i } → δi ∈ Dom(M) =⇒ s ′

i = si
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Constraint factorization

r1

s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}

{
k2 − δ2 → v2

k1 − δ1 → v1

}

Get-Reloc
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r , i − fs + fr )

Also applies to NS-Comp-Reloc:

NS-Comp-Reloc
s = k1 :: k2 :: ... :: kn s =reloc r

r = relocate(k1, fr ) ::
relocate(k2, fk2 − fs + fr ) :: ... ::

relocate(kn, fkn − fs + fr )
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Constraint factorization
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s1 s2

δ1 δ2

{k1 → v1} {k2 → v2}
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To read more on how it is used in arithmetic reasoning:
▶ "Relational Abstractions Based on Labeled Union-Find"

Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François
Bobot. PLDI 2025
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Encoding sequences over n-Indexed Sequences

▶ Each sequences s: An n-sequence with fs = 0 and ls ≥ −1
▶ seq.empty: Represented by a special constant symbol ϵ, an empty

n-sequence with fϵ = 0 and lϵ = −1.
▶ seq.++(s1, s2, s3, . . . , sn):

let
(
c1, concat(s1, relocate(s2, ls1 +1)),

let(c2, concat(c1, relocate(s3, lc1 +1)),
. . .

concat(cn−2, relocate(sn, lcn−2 +1))))
)
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Experimental evaluation: context

▶ The experimentation was done on quantifier free sequence and n-sequence
benchmarks, containing only sequence and n-sequence operations.

▶ The experimentation compares implementations of NS-BASE, NS-EXT and
NS-ShS in Colibri2 with:
▶ Sequence support in cvc5 and Z3.
▶ Support for n-sequences encoded with ADTs and Sequences in cvc5 and Z3.
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Experimental evaluation: UNSAT Seq

Figure: Number of solved goals by accumulated time (in
seconds) on unsatisfiable quantifier-free Sequence
benchmarks.
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Experimental evaluation: SAT Seq

Figure: Number of solved goals by accumulated time (in
seconds) on satisfiable quantifier-free Sequence benchmarks.
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Experimental evaluation: UNSAT NSeq

Figure: Number of solved goals by accumulated time (in
seconds) on unsatisfiable quantifier-free n-Indexed Sequence
benchmarks.
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Experimental evaluation: SAT NSeq

Figure: Number of solved goals by accumulated time (in
seconds) on satisfiable quantifier-free n-Indexed Sequence
benchmarks.
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Conclusion

Contributions presented in this talk:
▶ The theory of n-Indexed Sequences.
▶ Various ways to reason over it.
▶ Experimental evaluation.

Additional contributions in the manuscript:
▶ Soundness proofs.
▶ Implementation details and formalizations.
▶ Work on real and integer arithmetic reasoning.

(Labeled union-find for intervals and difference logic)
Future work:
▶ Acquire more benchmarks
▶ Add (n-)sequences to Alt-Ergo
▶ Improve reasoning over n-sequences with quantifiers.

Other:
▶ Co-supervized an intern for 6 months (Félix

Loyau-Kahn, Master’s student) on using AI for SMT
solver selection.

Contributions to software:
▶ Colibri2
▶ Alt-Ergo
▶ Smtml
▶ Dolmen
▶ SMT LSP
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Publications
▶ "On SMT Theory Design: The Case of Sequences"

Hichem Rami Ait-El-Hara, François Bobot and Guillaume Bury. LPAR 2024
▶ "An SMT Theory for n-Indexed Sequences"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. SMT 2024
▶ "Reasoning over n-indexed sequences in SMT"

Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. Acta
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▶ "Relational Abstractions Based on Labeled Union-Find"
Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François
Bobot. PLDI 2025

▶ "Constraint Propagation for Bit-Vectors in Alt-Ergo"
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Villemot. SMT 2025
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Santos. To be submitted to TACAS 2026.
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6. Labeled Union-Find for Arithmetic reasoning

7. NS-BASE and NS-EXT
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Reduced Product
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Group Action
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Normal forms

Definition (NSeq term normal form)
For simplicity, we introduce the concatenation operator :: with the invariant:

s 7→ s1 :: s2 =⇒ fs = fs1 ∧ ls = ls2 ∧ fs2 = ls1 +1

Normalization
The following rewriting rules are applied whenever possible:{

s 7→ [w1 ::]x [:: w2]
x 7→ y :: z

−→

{
s 7→ [w1 ::]y :: z [:: w2]
x 7→ y :: z

And if ly < fy is deduced:{
s 7→ [w1 ::]y :: z [:: w2]
x 7→ y :: z

−→

{
s 7→ [w1 ::]z [:: w2]
x 7→ z
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