
HAL Id: tel-05383515
https://theses.hal.science/tel-05383515v1

Submitted on 26 Nov 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theory of sequences tailored for program verification
Hichem Rami Ait El Hara

To cite this version:
Hichem Rami Ait El Hara. Theory of sequences tailored for program verification. Other [cs.OH].
Université Paris-Saclay, 2025. English. �NNT : 2025UPASG067�. �tel-05383515�

https://theses.hal.science/tel-05383515v1
https://hal.archives-ouvertes.fr

T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N

T
:2

02
5U

PA
SG

06
7

Theory of Sequences Tailored for
Program Verification

Théorie des séquences adaptée à la vérification des
programmes

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦580 : Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique.

Référent : Faculté des Sciences d’Orsay

Thèse préparée dans l’unité de recherche Institut LIST (Université Paris-Saclay,
CEA), sous la direction de François BOBOT, Ingénieur-Chercheur, et le

co-encadrement de Guillaume BURY, Ingénieur R&D à OCamlPro

Thèse soutenue à Paris-Saclay, le 15 octobre 2025, par

Hichem Rami AIT EL HARA

Composition du jury
Membres du jury avec voix délibérative

Sylvain CONCHON Président
Professeur, Université Paris-Saclay
Pascal FONTAINE Rapporteur & Examinateur
Professeur, Université de Liège
Maria Paola BONACINA Rapporteuse & Examinatrice
Professeure, Università degli Studi di Verona
Arnaud GOTLIEB Examinateur
Professeur, Simula Research Laboratory
Claire DROSS Examinatrice
Docteure, Adacore

Titre: Théorie des séquences adaptée à la vérification des programmes
Mots clés: Vérification de programmes, Théorie des séquences, Solveur SMT, Satisfibilité Mod-
ulo Théories, Solveur de contraintes, Programmation par contraintes.

Résumé: Les choix de modèles sémantiques
d’un langage de programmation ont un effet
important sur l’efficacité de la vérification des
programmes dans ce langage. En effet, de nom-
breuses techniques de vérification génèrent des
formules mathématiques en utilisant ces mod-
èles. Les théories mathématiques utilisées dans
ces formules et leur forme ont un impact direct
sur leur solvabilité par le solveur utilisé.

La modélisation de la mémoire et des struc-
tures de données utilise souvent la théorie SMT
(Satisfiabilité Modulo Théories) des tableaux,
qui est bien établie et utilisée dans le do-
maine des solveurs SMT. Dans cette théorie,
les tableaux permettent d’associer des valeurs
à des indices, quel que soit le type des indices
ou des valeurs. La théorie permet également
des opérations permettant d’écrire et de lire
le contenu des tableaux. Cependant, dans les
programmes concrets d’où proviennent les for-
mules à prouver, la mémoire et les structures
de données sont généralement limitées. Par ex-
emple, les tableaux dans les langages de pro-
grammation sont généralement indexés de 0 à
une constante n. Bien qu’il soit envisageable
d’encoder les tableaux finis dans la théorie SMT
des tableaux, cela n’est pas toujours une solu-
tion satisfaisante, une raison étant que l’égalité
extensionnelle sur un tableau fini de 0 à n ne
peut pas être directement modélisée en utilisant
l’égalité extensionnelle sur des tableaux infinis,
qui considère tous les entiers. Une théorie SMT
des séquences finies, dans laquelle les séquences
sont des collections de valeurs indexées sur un
ensemble contigu d’entiers, simplifierait la ré-
solution des formules qui modélisent de telles

structures de données. De plus, les séquences
finies avec des opérateurs de concaténation et
d’extraction peuvent également être utilisées
pour exprimer des langages de spécification par-
ticuliers tels que la logique de séparation. Une
difficulté est de choisir l’ensemble des opérations
sur les séquences à supporter, puisque la décid-
abilité de la théorie en dépend. D’un autre côté,
la décidabilité complète n’est pas toujours req-
uise, car les formules obtenues par la vérification
de programmes peuvent avoir une forme ou une
utilisation spécifique des opérations.

L’objectif de la thèse est d’étudier quelle
théorie des séquences est appropriée pour la
vérification de programmes. La thèse s’intéresse
notamment au cas des séquences n-indexées,
qui sont des séquences qui peuvent commencer
à n’importe quel indice n et se terminer à
n’importe quel indice m. Ces séquences sont no-
tamment présentes dans le langage de program-
mation Ada, mais étant une généralisation des
séquences 0-indexées, elles devraient permettre
de représenter et de raisonner sur ces dernières
également. Dans cette thèse, une théorie des
séquences n-indexées est proposée, et différentes
façons de raisonner sur cette théorie sont ex-
plorées, que ce soit à travers des axiomatisa-
tions, en utilisant des théories existantes ou
en développant différents calculi dédiés à cette
théorie. L’évaluation de ces approches de
raisonnement est effectuée à travers des implé-
mentations en OCaml dans le solveur de con-
traintes Colibri2. Divers détails de ces implé-
mentations sont présentés, ainsi que des con-
tributions supplémentaires apportées au raison-
nement arithmétique.

Title: Theory of Sequences Tailored for Program Verification
Keywords: Program verification, Theory of sequences, SMT solver, Satisfiability Modulo The-
ories, Constraint solver, Constraint programming.

Abstract: The choices of semantic models for
a programming language have a significant ef-
fect on the efficiency of the verification of pro-
grams in that language. Indeed, many verifica-
tion techniques generate mathematical formulas
using those models. The mathematical theories
used in these formulas and their shape have a
direct impact on their solvability by the used
solver.

The modelization of memory and data
structures often uses the SMT (Satisfiability
Modulo Theories) theory of arrays, which is
well established and used in SMT solvers. In
this theory, arrays associate values with indices,
both of which can be of any type. The theory
also allows for operations that enable the writ-
ing and reading of the stored data. However, in
the concrete programs from which the formu-
las that need to be solved are produced, mem-
ory and data structures are usually limited. For
example, arrays in programming languages are
usually indexed from 0 to a constant n. Al-
though it is possible to encode finite arrays in
the SMT theory of arrays, that is not always a
satisfying solution, one reason being that exten-
sional equality on a finite array from 0 to n can-
not be directly modeled using the extensional
equality on infinite arrays, which considers all
integers. An SMT theory of finite sequences, in
which the sequences are collections of values in-
dexed over a set of contiguous integers, would
simplify the solving of formulas that model such

data structures. Moreover, finite sequences with
concatenation and extraction operators can also
be used to express particular specification lan-
guages such as separation logic. One difficulty is
choosing the set of operations on the sequences
to support, since the decidability of the theory
depends on them. On the other hand, complete
decidability is not always required, since the for-
mulas obtained from program verification can
have specific shapes or uses of the operations.

The goal of the thesis is to study which the-
ory of sequences is suitable for program ver-
ification. The thesis focuses particularly on
the case of n-indexed sequences, which are se-
quences that can start at any index n and end
at any index m. These sequence appear in the
Ada programming language, but since they are
a generalization of 0-indexed sequences, they
should also make it possible to represent and
reason about the latter. In this thesis, a the-
ory of n-indexed sequences is proposed, and dif-
ferent ways of reasoning about this theory are
explored, whether through axiomatizations, by
using existing theories, or by developing vari-
ous calculi dedicated to this theory. The evalua-
tion of these reasoning approaches is carried out
through OCaml implementations in the Colibri2
CP (Constraint Programming) solver. Various
details of these implementations are presented,
as well as additional contributions to arithmetic
reasoning.

4

ⵉ ⵢⵉⵎⴰⵡⵍⴰⵏ-ⵉⵡ, ⵉ ⵜⵡⴰⵛⵓⵍⵜ-ⵉⵡ, ⵉ ⵡⴻⴳⴷⵓⴷ-ⵉⵡ.

5

6

Acknowledgements
This PhD involved a significant investment of time and effort on my part. A lot of which I

spent working alone from home, reading papers, writing drafts, preparing this dissertation, running
experiments, and writing far too many lines of code, a good chunk of which were eventually abandoned
when they did not produce the hoped-for results. Yet, like any research project, this thesis is not the
result of my work alone. For it to be possible, and for me to be able to successfully carry it out and
complete it, depended on the direct and indirect contributions of many people. I would like here to
express my sincere gratitude to all of them for making this journey possible.

First, I want to thank my PhD supervisors, François at the CEA and Guillaume at OCamlPro,
for accepting me as a PhD student, for everything I learned from them, and for all the scientific and
technical discussions we shared during these last three years.

I also want to thank the members of my jury. Thank you to Pascal and Maria Paola for agreeing to
be rapporteurs on my manuscript and for their helpful and insightful remarks. Thank you to Sylvain
for accepting to preside over the jury. And thank you to Arnaud and Claire for accepting to be my
examiners.

I am grateful to Fabrice and Muriel at OCamlPro for creating a place where scientific rigor meets
real-world pragmatism and for funding this PhD. OCamlPro was also where I had my first professional
experience after my master’s degree. I first joined as an intern for six months, then as a Research and
Development Engineer for one year before starting my PhD. This allowed me to deepen and expand
my understanding of both software engineering and formal methods.

I also want to thank all my colleagues at OCamlPro, both those who are still there and those who
have since moved on to “fly under other skies”. I am grateful to have met so many talented people
and to have taken part in many technical and non-technical discussions, whether at the “coin café”
in the Alesia office or during seminars and conferences. I would also like to thank the many interns
who passed through over the years, whether they went on to work in the industry or pursued a PhD,
and whether we still cross paths or not. I especially want to thank Félix, whom I had the pleasure of
supervising with my colleague Leo during my final year as a PhD student.

I am also thankful to my colleagues at the LSL lab at the CEA. Although I spent less time there,
I still had the chance to meet many talented people and to attend interesting talks and discussions. I
want to thank in particular the Colibri and Frama-C/WP teams, with whom I interacted the most,
as well as the many PhD students I met over the years.

My thanks also go to everyone I met at conferences, workshops, and summer schools. Thank you
for the many discussions and enriching exchanges. You were all part of this PhD experience for me,
and I am glad that our paths crossed. I wish the best of luck to you all, especially those of you who
are still pursuing your doctorate.

Finally, I want to thank my parents, who encouraged my curiosity and my love of learning and
seeking knowledge, and who instilled in me the discipline that allowed me to reach this point. I also
want to thank my brother, who paved the way for me to move abroad and to pursue a Bachelor’s,
a Master’s then a PhD, as well as my other siblings and my whole family for their support and
encouragement, even though most of them have no idea what my work is about.

7

8

Résumé en Français
Les méthodes formelles sont un domaine d’études à l’intersection de la logique, des mathématiques

et de l’informatique. Elles consistent à utiliser des techniques rigoureuses suivant des règles mathé-
matiques et logiques strictes et non ambiguës afin de vérifier les programmes et de garantir la sûreté
des logiciels.

Aujourd’hui, les logiciels sont présents dans presque tous les aspects de la vie humaine moderne, y
compris dans des domaines hautement critiques tels que les transports, l’industrie, le secteur énergé-
tique, les institutions financières, et bien d’autres encore. Assurer la sûreté des logiciels est donc plus
important que jamais, et son importance continue de croître à mesure que les logiciels occupent des
rôles de plus en plus significatifs.

Derrière ces logiciels se trouvent des programmes. Un programme correspond concrètement à
une suite d’instructions fournies aux ordinateurs afin d’être exécutées et de réaliser certaines tâches.
Parfois, l’exécution d’un programme peut différer de celle décrite dans sa spécification, la spécification
étant une description du comportement prévu du programme. Lorsque le programme se comporte
différemment de ce comportement prévu, on dit qu’il est défectueux ou buggé.

Une méthode formelle spécifique, appelée la vérification déductive, cible précisément ce problème.
Son rôle est de prendre un programme et sa spécification et de vérifier formellement que le programme
respecte cette spécification. En d’autres mots, le but est de prouver qu’un programme se comportera
toujours comme il est prévu de se comporter. Pour ce faire, la spécification doit être formelle, c’est-à-
dire précise et exprimée en termes mathématiques et logiques. Une fois qu’une spécification formelle et
un programme correspondant existent, les outils de vérification déductive traduisent ces programmes
et ces spécifications en formules mathématiques et logiques, de sorte que prouver la validité de ces
formules garantit que le programme respecte sa spécification.

L’une des façons les plus utilisées pour prouver automatiquement ces formules, notamment dans
l’industrie, consiste à utiliser des solveurs SMT (Satisfiabilité Modulo Theories). En effet, les solveurs
prennent en entrée des formules dans lesquelles sont combinées des expressions logiques avec des
théories en logique du premier ordre, et permettent soit de prouver leur validité, soit de générer un
contre-exemple lorsque ces formules ne sont pas prouvables. Les théories en logique du premier ordre
supportées par les solveurs SMT peuvent être classées en deux grandes catégories : celles représentant
des valeurs mathématiques, telles que les entiers, les réels et les tableaux fonctionnels (qui sont en fait
des mappings), et celles représentant les types et structures de données présentes dans des langages
de programmation, comme les théories des vecteurs de bits, de l’arithmétique flottante, des types
de données algébriques, des chaînes de caractères et des séquences. Ces dernières sont particulière-
ment utiles pour vérifier des programmes manipulant de tels types de données, car elles simplifient
considérablement la traduction des programmes et des spécifications en formules logiques.

Cette thèse s’inscrit dans ce contexte. L’objectif est de contribuer à réduire l’écart entre ce qui
peut être exprimé et prouvé en SMT et les structures de données et opérations réellement utilisées
dans les langages de programmation. Elle le fait à travers une étude de cas spécifique : les séquences
n-indexées, qui sont des structures de données représentant des collections de valeurs d’un même
type, indexées à partir d’un entier n jusqu’à un autre entier m. Comme aucune théorie SMT n’existe

9

actuellement pour représenter et raisonner sur de telles structures de données, cette thèse propose
une nouvelle théorie des séquences n-indexées et explore différentes manières de raisonner sur cette
théorie. Elle s’intéresse également à des sujets connexes, notamment d’autres théories dont ce travail
dépend, comme l’arithmétique linéaire.

Le reste de ce manuscrit est réparti en 7 chapitres. Le Chapter 1 sert d’introduction et présente
les contributions de la thèse. Le Chapter 2 donne une vue d’ensemble du contexte scientifique de ce
travail, ainsi que l’état de l’art des travaux connexes au sujet de la thèse. Le Chapter 3 présente le
fonctionnement du solveur de contraintes Colibri2, qui est l’outil dans lequel les implémentations des
contributions de cette thèse ont été réalisées. Le chapitre se concentre notamment sur le raisonnement
arithmétique dans Colibri2, qui sera très utilisé pour raisonner sur les séquences n-indexées. Il présente
également la structure de données “labeled union-find”, utilisée aussi bien dans l’implémentation du
raisonnement arithmétique que pour le raisonnement sur les séquences n-indexées.

Le Chapter 4 présente la théorie des séquences n-indexées ainsi que les différentes façons dévelop-
pées pour raisonner dessus, que ce soit en utilisant des théories déjà existantes, en réadaptant des
calculs développés pour la théorie des séquences, ou à travers un nouveau calcul original développé
dans le cadre de cette thèse. Ensuite, le Chapter 5 traite de l’implémentation des calculs décrits dans
Chapter 4, en donnant certains détails et en expliquant plusieurs choix d’implémentation. Le chapitre
présente également les résultats expérimentaux sur les performances de ces implémentations et les
compare aux résultats obtenus par d’autres outils.

Le Chapter 6 présente différentes contributions faites au raisonnement arithmétique dans Colibri2
afin d’en améliorer les performances, notamment pour le raisonnement sur les séquences. Enfin, le
manuscrit se conclut avec le Chapter 7, qui présente notamment des perspectives et des applications
potentielles supplémentaires de ce travail.

10

Contents

1 Introduction 17
1.1 Overview of the Thesis and Contributions . 18
1.2 Publications . 19

2 Background 21
2.1 Boolean Satisfiability . 21
2.2 Many-Sorted First-Order Logic . 27

2.2.1 Solving FOL . 29
2.2.2 First-Order Theories . 30

2.3 Satisfiability Modulo Theories . 31
2.3.1 The SMT-LIB initiative . 32
2.3.2 The Core Theory . 33
2.3.3 Equality and Uninterpreted Functions . 34
2.3.4 The Theory of Integers . 35

2.4 Constraint Programming . 35
2.4.1 Abstract Domains in Constraint Programming 37

2.5 The theory of Arrays . 38
2.5.1 Array Property Fragment . 39
2.5.2 Combinatory Array Logic . 41
2.5.3 Weakly Equivalent Arrays . 42

2.6 The theory of Sequences . 44
2.6.1 Existing theories . 45
2.6.2 Reasoning approaches . 48

2.7 Colibri2 . 52
2.7.1 Architecture . 53
2.7.2 Theory implementations . 59

3 Arithmetic I: Domains, Propagators and Relations 61
3.1 Arithmetic reasoning in Colibri2 . 61

3.1.1 Arithmetic domains . 62
3.1.2 Propagators . 70

3.2 Labeled Union-Find and The Constant Difference Relation 70
3.2.1 The Union-Find data structure . 71
3.2.2 The Labeled Union-Find data structure . 72
3.2.3 Constant Difference Relation . 78
3.2.4 Shostak Theories and Constant Difference Relations 79

11

4 n-Indexed Sequences I: Reasoning 83
4.1 Syntax and Semantics . 83
4.2 Reasoning with existing theories . 85

4.2.1 Encoding n-Indexed Sequences using Sequences and Algebraic Data Types . . 85
4.3 Porting Calculi from the Theory of Sequences to the Theory of n-Indexed Sequences . 88

4.3.1 Reasoning over Relocation . 89
4.3.2 The common calculus . 91
4.3.3 The base calculus . 92
4.3.4 The extended calculus . 93
4.3.5 Soundness Proofs . 94

4.4 Reasoning with Shared Slices . 99
4.4.1 Relations Graph . 100
4.4.2 Calculus . 101
4.4.3 Soundness Proofs . 103

5 n-Indexed Sequences II: Implementation and Evaluation 107
5.1 Implementation . 107

5.1.1 n-Indexed sequence Normal Forms . 107
5.1.2 Simplification rewrites . 109
5.1.3 Equivalence modulo relocation . 110
5.1.4 Reasoning . 114
5.1.5 Support for the Theory of Sequences . 115
5.1.6 Reasoning with Shared Slices . 116

5.2 Experimental Evaluation . 116
5.2.1 Translated n-Indexed Sequence Benchmarks . 117
5.2.2 Translated Sequence Benchmarks . 119
5.2.3 Discussion . 120

6 Arithmetic II: Extending Arithmetic Reasoning for n-Indexed Sequences 121
6.1 Difference Logic . 121

6.1.1 The Constraints Graph . 121
6.1.2 Solving Difference Logic Problems . 122
6.1.3 Implementation . 124
6.1.4 Experimental evaluation . 126

6.2 Labeled Union-Find for Constraint Propagation . 128
6.2.1 Labeled Union-Find for Reduced Product Computation 128
6.2.2 Domain Factorization with a Group Action . 132
6.2.3 Implementation . 134
6.2.4 Experimental Evaluation . 135

12

7 Conclusion and Perspectives 137
7.1 Implementation and Experimental Evaluation . 137
7.2 Proofs of Completeness and Decidability . 137
7.3 Applications . 138

13

List of Figures

1.1 An illustration of some popular SMT theories classified into two categories: Mathemat-
ics and Programming . 18

2.1 The grammar of propositional logic. 22
2.2 Semantics of logic operators. 22
2.3 Example of a propositional logic formula. 23
2.4 Truth table of the propositional logic formula in Figure 2.3. 23
2.5 Binary decision diagram of the propositional logic formula in Figure 2.3. 23
2.6 Comparison of various versions of state-of-the-art SAT solvers on the benchmarks of

the SAT Competition 2022. 26
2.7 The grammar of many-sorted first-order logic. 27
2.8 The resolution rule in FOL. 29
2.9 A schematic architecture of an SMT solver. 31
2.10 Semantics of the EUF logic . 34
2.11 SMT formula example. 35
2.12 Semantics of the theory of Arrays . 38
2.13 Inference rules for the Array Property Fragment decision procedure. 40
2.14 Basic decision procedure for the array theory. 41
2.15 Restricted extensionality and ⇑ inference rules for the array decision procedure, with k

as a fresh variable. 42
2.16 The weakly equivalent array decision procedure inference rules. 44
2.17 The reduction rules for the nth and update functions and the R-Split rule used for

normalization. 48
2.18 The inference rules of the EXT calculus. 50
2.19 Reduction rules for ground array terms involving the appS function. Terms at the top

of the rule are replaced by terms at the bottom of the rule in a formula Ψ. 51
2.20 Rewrite rule for quantified array property formulas involving the appS function. Terms

at the top of the rule are replaced by terms at the bottom of the rule in a formula Ψ. 52
2.21 Relations between different concepts at the core of Colibri2. 53
2.22 The interactions between the theories, the scheduler, the daemons, and the union-find

in Colibri2. 60

3.1 Example of the usage of a union-find data structure. 72
3.2 Example usage of the labeled union-find data structure. 75
3.3 Example of the usage of the labeled union-find data structure following the star topology. 77

4.1 The inference rule used to introduce the =reloc relation. 89
4.2 Common inference rules for the NS-BASE and NS-EXT calculi. 93
4.3 NS-BASE-specific inference rules. 94

14

4.4 NS-EXT inference rules for reasoning over interactions between set and get applications
and normal forms. 95

4.5 NS-EXT inference rules for reasoning over interactions between set and get applications. 95
4.6 Rules that introduce the shared-slice and weak-equivalence relations. 101
4.7 Rules from the shared slices calculus that handle the propagation of element constraints

over shared slice and weak-equivalence relations, as well as the interactions of shared
slices with one another, in addition to an adapted version of the extensionality rule for
shared slices. 102

5.1 Inference rules used to factorize constraints and normal forms on n-sequence terms. . . 114
5.2 Number of solved goals by accumulated time in seconds on quantifier-free NSeq bench-

marks translated from the QF_AX SMT-LIB benchmarks. 118
5.3 Number of solved goals by accumulated time in seconds on quantifier-free Seq bench-

marks translated from the QF_AX SMT-LIB benchmarks. 119

6.2 Representation of a difference logic problem in the form of a graph. 122
6.1 Illustration of a cycle in a difference logic graph. 122
6.3 Number of solved goals by accumulated time in seconds on difference logic benchmarks. 126
6.4 Statistics for satisfiable benchmarks using Colibri2 with and without the difference logic

engines. 127
6.5 Statistics for unsatisfiable benchmarks using Colibri2 with and without the difference

logic engines. 127
6.6 Fragment of C program. 128
6.7 Example of the usage of the constant difference relation for constraint propagation over

the domain of intervals. 131
6.8 Example of the usage of the constant difference relation for constraint factorization over

the domain of intervals. 134
6.9 Comparison of Colibri2 variants using different interval domains on SMT-LIB arithmetic

benchmarks. 136

15

List of Tables

4.1 The signature of the theory of n-indexed sequences. 83

5.1 Statistics on the performance of the solvers on quantifier-free unsatisfiable NSeq bench-
marks. 118

5.2 Statistics on the performance of the solvers on quantifier-free satisfiable NSeq benchmarks.118
5.3 Statistics on the performance of the solvers on quantifier-free unsatisfiable Seq bench-

marks. 120
5.4 Statistics on the performance of the solvers on quantifier-free satisfiable Seq benchmarks.120

Listings
2.1 The SMT core theory. 33
2.2 The SMT theory of integers. 35
2.3 SMT formula example in the SMT-LIB standard. 36
2.4 Signature of the theory of arrays. 38
2.5 Example of an SMT problem using arrays. 39
2.6 Definition of the merge function using the inter function. 57
3.1 Implementation of the solve function used in the product domain. 68
3.2 Implementations of the find and union functions in a union-find. 71
3.3 Implementations of the functions in a labeled union-find. 74
3.4 Implementation of the add_relation function in the labeled union-find data structure

in which the trees follow the star topology. 76
3.5 Implementation of the subst_label function in the labeled union-find data structure in

which the trees follow the star topology. 78
4.1 The sort of n-indexed sequences defined using the sort of sequences and a product type,

and the definitions of the last, set, and get functions over this sort. 86
4.2 The declaration and axiomatization of the const function, and the definitions of the

functions relocate, concat, slice, and update from the theory of n-indexed sequences,
when the theory is encoded using the theories of sequences and algebraic data types. . 86

6.1 Implementation of the Bellman–Ford algorithm used for negative cycle detection in the
difference logic graph. 123

6.2 Implementation of the incremental negative cycle detection algorithm in the difference
logic graph. 124

6.3 Normalization of binary arithmetic operations for difference logic. 125
6.4 Interval domain update hook function. 129
6.5 Constant difference class represetative change hook function. 130
6.6 Definitions of the get_dom, upd_dom and repr_change_hook functions, used by the

interval domain implemented as a group action AI . 133

16

Chapter 1

Introduction

At the intersection of logic, mathematics, and computer science lies the field of formal
methods, dedicated to employing rigorous techniques following strict and unambiguous
mathematical and logical rules to ensure that software is safe.

Today, software is involved in nearly every aspect of modern human life, including
highly critical domains such as transportation, healthcare systems, financial institutions,
industrial production, energy facilities, and more. Ensuring that software is safe is there-
fore more important than ever, and its importance continues to grow as software takes
on increasingly significant roles.

The IEEE standard glossary of software engineering terminology [68] defines software
as “computer programs, procedures, and possibly associated documentation and data
pertaining to the operation of a computer system”, and a program as “a combination of
computer instructions and data definitions that enable computer hardware to perform
computational or control functions”.

In other words, a program is what software developers tell the computer to do con-
cretely. This may differ from the specification of a program, which describes the intended
behavior of the program. Differences between a program’s specification and its actual
behavior are a significant source of bugs in software engineering.

A specific formal method called deductive verification targets this problem. Its role
is to take a program and its specification and formally verify that the program complies
with what the specification states. The specification must be a formal specification, i.e.
it must be precise and expressed in mathematical and logical terms. However, in practice,
most specifications exist only in natural language (if they exist at all), making this task
even harder.

Once a formal specification and a corresponding program exist, there are tools that
can transform the program and its specification into mathematical and logical formulas.
Proving the validity of these formulas ensures that the program respects its specification.

One such tool is the Why3 deductive verification framework, which offers its own
programming and formal specification language. Why3 relies on Hoare logic, a formal
system that verifies that a program satisfies its specification. In Hoare logic, each (part of
a) program s is associated with a precondition p and a postcondition q, together forming

17

Mathematics Programming
Booleans

Integers
Reals

Arrays

BVs
FP Numbers

ADTs
Strings

Sequences

Figure 1.1: An illustration of some popular SMT theories classified into two categories: Math-
ematics and Programming

a Hoare triple, denoted {p}s{q}. The triplet {p}s{q} means that if the precondition p
holds, then after executing s, the postcondition q should also hold.

Why3 translates these Hoare triples into Satisfiability Modulo Theories (SMT) formu-
las, which are then checked by SMT solvers. SMT formulas combine logical expressions
with first-order logic theories. As illustrated in Figure 1.1, these theories can be classi-
fied into two broad categories: those representing mathematical values, such as integers,
reals and arrays, and those representing types and data structures from programming
languages, such as the theories of bit-vectors (BV), floating-point (FP) arithmetic, alge-
braic data types (ADTs), strings and sequences. The latter are particularly helpful for
verifying programs that manipulate such data types because they significantly simplify
the translation of programs and specifications into logical formulas.

This thesis is situated within this context. Its goal is to help bridge the gap between
what can be expressed and proven in SMT and the data structures and operations actually
used in programming languages. It does so through a specific case study: n-indexed
sequences, which are data structures representing collections of values of the same type,
indexed from any given integer n to another integer m. Since no SMT theory currently
exists for reasoning about such data structures, this thesis explores different ways to
achieve this and develops new methods for doing so. It also investigates related topics,
notably other theories on which this work depends, such as linear arithmetic.

1.1 Overview of the Thesis and Contributions
This manuscript is divided into seven chapters:

Chapter 1 is the current one, which serves as the introduction.
Chapter 2 provides background and technical preliminaries. It presents, in seven

sections, all the necessary technical background to understand the remainder of the
manuscript. It starts with Boolean satisfiability in Section 2.1, then moves on to many-
sorted first-order logic in Section 2.2. Based on these two, it introduces Satisfiability
Modulo Theories (SMT) and Constraint Programming (CP) in Sections 2.3 and 2.4, re-
spectively. It then discusses the theories of arrays and sequences, along with common
reasoning techniques over them, in Sections 2.5 and 2.6. Finally, Section 2.7 presents Col-
ibri2, a CP solver used for reasoning over SMT formulas, in which the implementations

18

described in the manuscript were made, and which was used for experimental evaluation.
Chapter 3 is the first chapter on arithmetic reasoning. It starts in Section 3.1 with a

formalization of the arithmetic reasoning in Colibri2. In particular, Section 3.1.1 describes
four important domains used in Colibri2 for arithmetic reasoning: the domains of interval
unions, polynomials, products, and modular arithmetic. The first three domains were
developed independently of this thesis, but their formalization is one of this thesis’s
contributions. The fourth domain, modular arithmetic, was developed during the work
on [80] as part of this thesis. Section 3.1.2 describes the propagation engine used for
arithmetic reasoning in Colibri2, which was also developed independently of this thesis.

Section 3.2 introduces the labeled union-find data structure and the constant differ-
ence relation. It begins with a reminder on the union-find data structure in Section 3.2.1,
then presents the labeled union-find data structure in Section 3.2.2 which was partially
developed as part of the work carried out during this thesis. Sections 3.2.3 and 3.2.4
formalize the constant difference relation in Colibri2 and describe its interaction with the
Shostak theory of arithmetic. Although these components were implemented indepen-
dently of this thesis, their formalization had not previously been done and is part of the
contributions of this thesis.

Chapter 4 describes one of the main contributions of this thesis: the theory of n-
indexed sequences. Section 4.1 introduces the developed theory. Section 4.2 discusses
reasoning approaches that use existing theories, while Section 4.3 presents a native cal-
culus developed by adapting calculi from the theory of sequences. Section 4.4 details the
original calculus developed specifically for n-indexed sequences.

Chapter 5 builds upon Chapter 4 by presenting the implementations of the calculi
described there in Section 5.1, which were done as part of this thesis. Section 5.2 presents
the experimental evaluations of these implementations.

Chapter 6 details contributions made during this thesis to arithmetic reasoning in
Colibri2, aimed at improving its efficiency for reasoning over n-indexed sequences. In
particular, Section 6.1 presents the implementation of difference logic reasoning in Col-
ibri2. Section 6.2 describes how the labeled union-find was employed to enhance the
propagation of arithmetic interval constraints.

Chapter 7 concludes the thesis and discusses possible future work and perspectives
that can be envisaged based on the results of this research.

1.2 Publications
Part of the contributions described in this manuscript were published in the following
papers:

• Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. “On SMT Theory
Design: The Case of Sequences”. In: LPAR 2024 Complementary Volume. Ed. by
Nikolaj Bjørner, Marijn Heule, and Andrei Voronkov. Vol. 18. Kalpa Publications
in Computing. EasyChair, May 2024, pp. 14–29. doi: 10.29007/75tl

• Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. “An SMT Theory
for n-Indexed Sequences”. In: Proceedings of the 22nd International Workshop on
Satisfiability Modulo Theories. Ed. by Giles Reger and Yoni Zohar. Vol. 3725.

19

https://doi.org/10.29007/75tl

CEUR Workshop Proceedings. Montreal, Canada: CEUR, July 2024, pp. 64–74.
url: https://ceur-ws.org/Vol-3725/#short13

• Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François Bobot.
“Relational Abstractions Based on Labeled Union-Find”. In: Proc. ACM Program.
Lang. 9.PLDI (June 2025). doi: 10.1145/3729298

• Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. “Reasoning over
n-indexed sequences in SMT”. in: Acta Informatica 62.3 (Aug. 2025), p. 33. issn:
1432-0525. doi: 10.1007/s00236-025-00496-w

20

https://ceur-ws.org/Vol-3725/#short13
https://doi.org/10.1145/3729298
https://doi.org/10.1007/s00236-025-00496-w

Chapter 2

Background

The purpose of this chapter is to introduce the reader to the general topic of automated
deduction and how it is used for program verification. Section 2.1 offers a quick pre-
sentation of the main ideas behind propositional logic and defines basic concepts such
as satisfiability, unsatisfiability, validity, decidability, and completeness. These concepts
will be used in the rest of this manuscript. Section 2.2 discusses many-sorted first-order
logic, a more expressive logical framework than propositional logic. This section also
introduces first-order theories. Section 2.3 presents satisfiability modulo theories and
some first-order logic theories that are used in it, and Section 2.4 introduces constraint
programming and how it relates to sections 2.1 and 2.3.

2.1 Boolean Satisfiability
Propositional logic, or Boolean logic, is a branch of logic in which formulas are expressed
through the boolean constants true and false, boolean variables, and logic connectors. It
allows expressing boolean satisfiability problems, or SAT problems [23], in the form of
propositional logic formulas.

The syntax of propositional logic formulas is defined by the grammar in Figure 2.1,
where Vb denotes the set of propositional variables. Figure 2.2 describes the semantics
of logical connectives in propositional logic. From these semantics, additional important
logical equivalences can be derived. For example the double negation law, which states
that for any formula p:

• ¬¬p ≡ p

As well as De Morgan’s laws, which state that for any formulas p and q:

• ¬(p ∨ q) ≡ ¬p ∧ ¬q

• ¬(p ∧ q) ≡ ¬p ∨ ¬q

These equivalences are often used to simplify SAT problems and help with solving
them. Solving a SAT problem consists in determining whether the formula that expresses
it is satisfiable or unsatisfiable.

Definition 2.1 (Interpretation). An interpretation of a logic formula is a mapping of
every variable in the formula to a boolean value.

21

⟨formula⟩ ::= ⟨atom⟩
| ¬⟨formula⟩
| (⟨formula⟩⟨binop⟩⟨formula⟩)

⟨binop⟩ ::= ∧ | ∨ | =⇒ | ⇐⇒
⟨atom⟩ ::= true | false | v ∈ Vb

Figure 2.1: The grammar of propositional logic.

Operation Symbol Semantics
Negation ¬p true if p is false, false if p is true.
Conjunction p ∧ q true if both p and q are true, false otherwise.
Disjunction p ∨ q true if p or q or both are true, false otherwise.
Implication p =⇒ q same as q ∨ ¬p.
Equivalence p ⇐⇒ q same as (q =⇒ p) ∧ (p =⇒ q).

Figure 2.2: Semantics of logic operators.

Definition 2.2 (Satisfiability, unsatisfiability and validity). A logic formula is said to
be satisfiable if there exists an interpretation such that the formula evaluates to true,
unsatisfiable if no such interpretation exists, and valid if it evaluates to true for all existing
interpretations.

From Definition 2.2, since an unsatisfiable formula evaluates to false under every
interpretation, its negation evaluates to true under every interpretation, i.e. its negation
is valid. Conversely, a formula is valid if and only if its negation is unsatisfiable. For this
reason, a common way to establish the validity of a formula is to prove that its negation
is unsatisfiable.

Figure 2.3 illustrates an example of a propositional logic formula, using the operators
described in Figure 2.2 and where p, q, and r are boolean variables. Figure 2.4 shows
the satisfiability of the formula for each combination of the truth values of its variables
in the form of a truth table.

Example 2.1. From the truth table in Figure 2.4 of the formula in Figure 2.3, the formula
is satisfiable with the interpretation:

I : {p 7→ true, q 7→ false, r 7→ true}

which corresponds to the third row in the truth table.

A trivial way to solve SAT problems is by enumeration, which consists of assigning
truth values to all its boolean variables and checking the satisfiability of the original
formula for each possible combination of the truth values of the variables. Truth tables,
such as the one illustrated in Figure 2.4, are an example of this approach.

Another popular way to solve SAT problems is by using BDDs (Binary Decision
Diagrams) [6]. BDDs encode propositional logic formulas as binary trees. The internal

22

((p =⇒ q) ∧ (q =⇒ r))︸ ︷︷ ︸
a

∨(p =⇒ r)

︸ ︷︷ ︸
b

Figure 2.3: Example of a propositional logic formula.

p q r p =⇒ q q =⇒ r a p =⇒ r b
true true true true true true true true
true true false true false false false false
true false true false true false true true
true false false false true false false false
false true true true true true true true
false true false true false false true true
false false true true true true true true
false false false true true true true true

Figure 2.4: Truth table of the propositional logic formula in Figure 2.3.

nodes represent boolean variables, and the outgoing edges from a node correspond to
the two possible truth values of the variable represented by the node. Each path from
the root to a leaf represents an interpretation of the variables, and the leaf stores the
resulting truth value of the formula under that interpretation.

Although they were first introduced by Lee [77] in 1959. BDDs became most useful
when Brace, Rudell, and Bryant introduced an efficient implementation of BDDs [33]
that notably featured subproblem sharing.

In practice BDDs tend to be better than truth tables, as they allow for better solving
complexity since they make it possible to avoid redundancy by sharing sub-problems, and
avoiding assigning values to variables when doing so is not necessary to determine the
satisfiability of the problem. The order in which variables are considered has a significant
impact on the efficiency of BDDs. If the satisfiability of a formula does not depend on
certain variables, placing them later in the ordering allows the BDD to skip them entirely.
In contrast, truth tables always require assigning values to all variables, regardless of their
relevance.

p

true

false q

true

r

false true
true

false true

false true

Figure 2.5: Binary decision diagram of the propositional logic formula in Figure 2.3.

23

Figure 2.5 illustrates a BDD that represents the truth table in Figure 2.4 of the
problem in Figure 2.3. The node representing the variable p is at the root of the tree, its
left edge, representing the case where p is false, points to the leaf true, which means that
if p is false then the formula evaluates to true regardless of the truth values of r and q.
The outgoing edge from p pointing to r and the outgoing edges from r show that when p
and r are true, the formula is true. When p is true and r is false, then the formula is false.
The node q and its outgoing and incoming edges are greyed out because the satisfiability
of the formula can be determined from the values of p and r alone as shown in the BDD.

With the simplification illustrated in Figure 2.5, checking the satisfiability of a propo-
sitional logic formula expressed as a BDD reduces to checking whether there exists at
least one path from the root to a leaf labeled true. If such a path exists, the formula
is satisfiable, and the assignments to the variables along that path form a satisfying in-
terpretation. Variables that do not appear on the path can take arbitrary truth values,
since they do not affect the evaluation of the formula. Conversely, if the BDD reduces to
a single leaf labeled false, then the formula is unsatisfiable.

Definition 2.3 (Soundness). A satisfiability checking procedure is sound if, whenever it
answers that a formula is unsatisfiable, the formula is indeed unsatisfiable

Definition 2.4 (Completeness). A satisfiability checking procedure is complete if, when-
ever a formula is unsatisfiable, the procedure will eventually answer that the formula is
unsatisfiable.

Definition 2.5 (Decision procedure). A decision procedure is a sound and complete
satisfiability checking procedure.

Definition 2.6 (Decidability). A logical theory is decidable if there exists a decision
procedure for it.

Propositional logic being a decidable logical theory, decision procedures to automat-
ically solve SAT problems were developed. The first SAT solving decision procedure
developed, better than enumeration, was the Davis-Putnam decision algorithm [46], intro-
duced in 1960. The algorithm was soon after, in 1962, improved into the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [45]. Later on, the Conflict Driven Clause Learn-
ing (CDCL) algorithm was introduced [83].

Definition 2.7 (Literal). A literal is either a boolean variable p or its negation ¬p.

Definition 2.8 (Conjunctive Normal Form). The conjunctive normal form (CNF) is a
form in which problems are written as a conjunction of clauses ∧

i ci, where each clause
ci is a disjunction of literals ∨

j lj.

The DPLL and CDCL algorithms work on SAT problems encoded in conjunctive
normal form (CNF) [104]. This representation is both simplified and convenient for
the algorithms, as it allows them to quickly detect when a formula becomes false after
deciding the value of variable, since it takes for one clause to be false for the whole formula
to be false. Both algorithms are based on making decisions and backtracking. Making
decisions, or case splitting, is the process through which, when the decision procedure does
not manage to determine the truth value of a SAT problem by deduction alone, it assigns

24

values to variables whose values cannot be deduced and tries to solve the problem in each
case. Backtracking works by setting a backtracking point before deciding which value to
assign to a given variable. Setting a backtracking point consists in saving a snapshot of
the current solving state, with all the previously made decisions and deductions, which
allows the procedure to come back to the saved state, i.e. backtrack, discarding all the
changes made after it.

The DPLL algorithm works by taking the variables of a given formula, one after the
other, to decide a truth value to assign to them. If with the assigned values to the
variables the formula evaluates to true, then it is satisfiable. Otherwise, if after one
of the decisions, the formula evaluates to false, then a contradiction was found, and the
procedure backtracks to before making the decision to choose a different value. If that also
leads to a contradiction, the procedure backtracks to the previous decision and so on, if
all the combinations of decisions lead to contradictions, then the formula is unsatisfiable.

The CDCL algorithm extends the DPLL algorithm by improving the decision-making
through the introduction of additional solving strategies such as learning, backjumping,
and restarting. Learning is a process through which clauses are added to the formula to
decrease the number of unnecessary decisions, these learned clauses are the ones that lead
to conflicts. Backjumping, also called non-chronological backtracking, consists in back-
tracking until a backtracking point of a decision on a variable that is part of the learned
clauses from the conflict is encountered, the purpose being to skip making decisions on
variables that are irrelevant to the conflict, but in some cases, skipping already made
decisions is not helpful [95]. Restarting is the process through which all the previous
decisions and variable assignments are discarded, while the learned clauses are kept, al-
lowing the solver to restart with the benefit of the learned clauses and without additional
context.

Although the CDCL algorithm is the most popular and the one that has shown some
of the best results in practice while being sound and complete, incomplete approaches
also exist and have their own advantages and disadvantages. Notably, local search based
approaches [65, 111] are often more efficient than complete methods for some randomly
generated satisfiable problems, as well as some very large satisfiable problems. The
approaches usually work on problems in CNF. They start by choosing a random interpre-
tation for all the boolean variables in the problem. If the problem is not satisfiable with
this first interpretation, then a clause that evaluates to false is selected, and the value of
one of its boolean variables is flipped from true to false or vice versa, until a satisfying
solution is found.

Local search based approaches tend to have a bias for satisfiable problems as they
are search based and more efficient for model generation, in fact, they are often not only
incomplete but also unable to determine that a problem is unsatisfiable. Therefore, for
program verification needs, complete approaches such as DPLL and CDCL are used.

SAT solvers are software that implement SAT solving algorithms and are dedicated to
solving SAT formulas. Since the introduction of the CDCL algorithm, their performance
has greatly improved [22] as illustrated in Figure 2.6. In fact, the implementations of
many modern SAT solvers are based on the CDCL algorithm as it has shown much
better practical performance compared to other algorithms [83]. The first CDCL SAT
solvers were GRASP [82], Chaff [89], and Berkmin [60], these were superseded by more
modern ones such as MiniSat [50], CryptoMiniSAT [115], Glucose [10], CaDiCaL [20],

25

SAT Competition All Time Winners on SAT Competition 2022 Benchmarks

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

time in seconds

so
lv
ed

in
st
an
ce
s

kissat-mab-2021
kissat-mab-hywalk-2022
kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
abcdsat-2015
lingeling-2014
lingeling-2013
glucose-2012
glucose-2011
minisat-2008
precosat-2009
cryptominisat-2010
satelite-gti-2005
minisat-2006
rsat-2007
berkmin-2003
limmat-2002
chaff-2001
zchaff-2004
boehm-1992
grasp-1997

https://cca.informatik.uni-freiburg.de/satmuseum

The SAT Museum.
Armin Biere and Mathias Fleury and Nils Froleyks and Marijn J.H. Heule.

In Proceedings 14th International. Workshop on Pragmatics of SAT (POS’23),
vol. 3545, CEUR Workshop Proceedings, pages 72-87, CEUR-WS.org 2023.

[paper - bibtex - data - zenodo - ceur - workshop - proceedings]

Figure 2.6: Comparison of various versions of state-of-the-art SAT solvers on the benchmarks
of the SAT Competition 2022.

26

⟨formula⟩ ::= p[(⟨term⟩⟨sort⟩[, ⟨term⟩⟨sort⟩]∗)]? with p ∈ ΣF
bool

| ¬⟨formula⟩
| ⟨formula⟩⟨binop⟩⟨formula⟩
| ∀⟨variable⟩[, ⟨variable⟩]∗. ⟨formula⟩
| ∃⟨variable⟩[, ⟨variable⟩]∗. ⟨formula⟩

⟨binop⟩ ::= ∧ | ∨ | =⇒ | ⇐⇒
⟨term⟩ ::= f [(⟨term⟩⟨sort⟩[, ⟨term⟩⟨sort⟩]∗)]? with f ∈ ΣF

| ⟨variable⟩⟨sort⟩

| c ∈ D⟨sort⟩

⟨variable⟩ ::= v ∈ V
⟨sort⟩ ::= τ ∈ ΣS

Figure 2.7: The grammar of many-sorted first-order logic.

and Kissat [21]. Although they are all based on the CDCL algorithm, each has its own
strategies and heuristics that differentiate them from one another in performance.

The improvement in the performance of SAT solvers has been accompanied by the
growth of their use cases. Indeed, many tasks that can be encoded as propositional logic
problems can be delegated to SAT solvers. Some cases in which SAT solvers are used
include: hardware and software verification [38, 66], notably with SAT-Based bounded
model checking [24, 69], planning [51, 106], and cryptography [115].

2.2 Many-Sorted First-Order Logic
Propositional logic is not powerful enough to express concepts such as “all objects satisfy
some property”, or “there exists an object that satisfies property P and not property Q”.
First-order logic (FOL), also called predicate logic, is necessary to express such state-
ments. This section presents many-sorted first-order logic (MSFOL). It is a more conve-
nient variant of FOL that allows mixing differently sorted terms in the same formulas. It
also supports rank-1 polymorphism, i.e. functions can be defined generically to operate
over sort variables which can be any sort, with the sort variables universally quantified
only at the outermost level of the type signatures of the functions.

In the TPTP world [118], the format in which MSFOL is expressed is called TFF
for typed first-order form, or TFF1 [26] for TFF with rank-1 polymorphism. The TPTP
world is a standard infrastructure for the research, development, and deployment of
automated theorem proving systems. TPTP [117] stands for “Thousands of Problems for
Theorem Provers” which is a vast library of theorem proving benchmarks.

Figure 2.7 illustrates the grammar by which MSFOL syntaxes are defined, with ΣS as
the set of sorts, V the set of variable symbols, D⟨sort⟩ as the sort domain of a given sort,
ΣF the set of function symbols and ΣF

bool the set of predicate symbols. In this grammar,

27

three main kinds of expressions can be identified, sorts, terms and formulas. Sorts, also
called types in programming languages, are a way to identify terms by the domain to
which their interpretation must belong.

Definition 2.9 (Sorts). Sorts are a way to categorize expressions by the domain to which
their interpretation belongs. They are also called types in programming languages.

Definition 2.10 (Sort domain). To each sort τ is associated a sort domain Dτ , also
called a concrete domain, which represents the set of possible values that an expression of
that sort can have. Every sort domain Dτ is disjoint from every other sort domain Dτ ′.

Example 2.2. The sort domain of boolean terms is DB = {true, false}, and the sort
domain of integer terms is DI = Z, with Z as the set of integers.

There are three main kinds of sorts:

• Simple sorts: which are either interpreted, i.e. they have a defined associated sort
domain, such as booleans, integers or reals, or uninterpreted, in which their sort
domain is not predetermined.

• Parametrized sorts T (τ0[, τi]∗): also called sort constructors, they are sorts that
need to take other sorts as parameters to be constructed. For example the sort
Array(I,E) has two sort parameters I and E.

• Polymorphic sort variables: universally quantified sort variables, that can be any
other sort. Since rank-1 polymorphism is supported, sort variables are bound at
the top-level of the formula in which they appear.

Definition 2.11 (Function and predicate symbols). Function symbols represent mappings
from an n-tuple of terms into another term, function symbols have sorts of the form:
[τi →] ∗ τ , with i going from 1 to n, τ1, . . . , τn as the sorts of the arguments of the
function, and τ as the sort of the returned term. If the function symbol is of arity 0, i.e.
n = 0, then the function is an uninterpreted constant symbol of sort τ . When τ is the
sort of booleans, then the function symbol is called a predicate symbol.

Every term has a sort, and there are three kinds of terms:

• Variables: which are symbols that are bound by either universal or existential
quantification, and which do not have a fixed interpretation.

• Constants: which are specific elements from a given sort domain.

• Applications of function symbols to as many terms as their arity.

Definition 2.12 (Uninterpreted symbol). A symbol of which the interpretation is not
constrained by any axiom.

In addition to the logical operations in propositional logic, formulas in first-order logic
can also be:

• Applications of predicate symbols to as many terms as their arity.

28

resolution-rule
C1 ∨ L1 C2 ∨ ¬L2
{C1 ∨ C2}θ

(with {L1}θ = {L2}θ)

Figure 2.8: The resolution rule in FOL.

• Universal quantifiers: which state that a given formula ∀x. ψ(x) is true if ψ(c) is
true for any value c in the domain D.

• Existential quantifiers: which state that a given formula ∃x. ψ(x) is true if ψ(c) is
true for at least one value c in the domain D.

The distinction between predicates and terms in MSFOL is not as relevant as it is
in FOL. Formulas can simply be considered as boolean terms, the distinction is there to
differentiate between what can be solved, which are formulas for which the satisfiability
can be checked, and what is used by the formulas which are other terms. Therefore, in
Figure 2.7, ΣF

bool ⊆ ΣF .

2.2.1 Solving FOL
Contrary to propositional logic where model generation is expected when a problem is
satisfiable, in (MS)FOL the goal is usually to prove the validity of a formula. Given a
formula ψ, proving that ψ is valid comes down to determining that ¬ψ is unsatisfiable.
That can be done in various ways [28, 55], two of which are natural deduction and the
resolution method.

Natural deduction consists in applying sound inference rules which introduce or elim-
inate logic operators and quantifiers until a contradiction is deduced proving validity.
Natural deduction can be used through proof assistants such as the Rocq prover [121] (for-
merly known as the Coq proof assistant), the Lean theorem prover [93] and Isabelle [100].

The resolution method [107] is an automated proof technique for FOL. This technique
is mainly based on the resolution rule which is applied repeatedly until a contradiction
is found, or the rule cannot be applied anymore, if it was already applied on all clauses
on which it could have been applied. This method is complete for validity, but may not
terminate if the problem is not valid.

The resolution rule in FOL, presented in Figure 2.8 states that given the formulas
C1∨L1 and C2∨¬L2, such that there exists a substitution θ that makes {L1}θ and {L2}θ
syntactically equal, then the formula C1 ∨ C2 on which the substitution θ is applied can
be deduced.

Before applying the resolution rule, it is necessary to first eliminate quantifiers and
then put the problem in CNF. Existential quantifiers are eliminated through Skolemiza-
tion, which is a method that consists in introduction Skolem functions for each existen-
tially quantified variable. For each formula of the form ∀x1, x2, . . . , xn. ∃y, Skolemization
consists in:

• Introducing a fresh function symbol fy (called the Skolem function) that takes as
arguments the terms of the sorts of x1, x2, . . . , xn and returns a term of the same
sort as y.

29

• Substituting all occurrences of y with fy(x1, x2, . . . , xn)

Skolemization is a way to tie the values of existentially quantified variables to the
universal quantifiers that precede the existential quantifier.

Universal quantifiers are eliminated more straightforwardly by removing the quanti-
fiers and keeping the quantified variables as free variables, and considering that all free
variables are universally quantified. Which can be done since the goal is to deduce unsat-
isfiability, i.e. the formula cannot be satisfied with any interpretation of the free variables,
which comes down to considering them as universally quantified. Once quantifiers are
eliminated, the problem can be put in CNF and the resolution rule can be applied.

The resolution method is particularly well suited for implementation in software.
Popular automated theorem provers (ATPs), which are used to automatically prove the
validity of first-order logic formulas, like the E theorem prover [110] and Vampire [74],
are based on extensions of the resolution method.

2.2.2 First-Order Theories
Problems encoded in FOL can often share many symbols with their corresponding se-
mantics. These symbols with their semantics define some basic foundations of common
first-order theories that are often needed, these include integer and real arithmetic theo-
ries.

Definition 2.13 (Signature). A signature Σ in First-Order Logic is the set of defined
non-logical symbols composed of:

• The set of sorts ΣS.

• The set of constant symbols ΣC.

• The set of functions ΣF .

Definition 2.14 (Σ−structure). Given a signature Σ, a Σ−structure is an interpretation
of all the symbols in the signature Σ and all the expressions that can be constructed from
them without free variables.

Definition 2.15 (Theory). A theory T is defined by the pair (Σ,S), where Σ is the
signature, and S is the semantics, expressed as a class of Σ−structures that interprets
the symbols in Σ.

The semantics of some theories can be defined by a set of axioms that restrict the
interpretation of the symbols of the theories, that is notably the case in the theory of
equality and uninterpreted function (Figure 2.12), and the theory of arrays (Figure 2.12).
One limitation of axiomatizing the semantics of a theory is that it cannot have a unique
model, model-generation is in general hard with the presence of axiomatizations which
often use quantifiers.

Alternatively, it is possible to also have theories for which the semantics are mathe-
matically defined and built-in allowing them to have a fixed model. The study of these
theories and how to efficiently reason over them lead to the development of the field of
Satisfiability Modulo Theories.

30

Input Formulas SAT solver

Quantifier
Instantiation

Theories
Interpretations

Conflicts and
propagations

Partial
Model

Instances

Propagations

UnsatSat
(and model)

Unknown

Figure 2.9: A schematic architecture of an SMT solver.

2.3 Satisfiability Modulo Theories

Since the early 2000s, Satisfiability Modulo Theories (SMT) [15] has seen significant
growth in popularity and applications, both in academia and industry. SMT is based on
MSFOL, as it allows both propositional reasoning and reasoning over first-order theories.
The main difference between SMT and MSFOL is that in SMT there are built-in theories
with defined interpretations and these theories have dedicated decision procedures to
reason over them, while in MSFOL theories are axiomatized.

These decision procedures are combined with one another using theory combination
techniques, notably the Shostak [114], Nelson-Oppen [97] and CDSAT [30] theory com-
bination methods, allowing soundness to be maintained through the combined reason-
ing. The integration of a theory T solver with a SAT solver is often done through the
DPLL(T), also called CDCL(T), approach on which most state-of-the-art SMT solvers
are based [11, 91].

The expressiveness of SMT solvers is one of the main drivers of their industrial and
academic uses, since they work on first-order logic formulas, making the encoding of
logical formulas in SMT much easier than doing so in propositional logic. In addition,
multiple theories, such as fixed-size bit-vectors, floating-point arithmetic, algebraic data
types, sequences, and strings, are designed in a way that makes it easier to use them
to represent data types and data structures from higher-level programming languages,
making the usage of SMT solvers for program verification more convenient.

In fact, SMT solvers like Alt-Ergo [41], bitwuzla [98], cvc5 [11], and Z3 [91] are relied
upon by various tools to prove logical formulas or to generate counterexamples, notably
program verification tools such as Frama-C [73], Why3 [54], SPARK-2014 [86], TIS-
Analyzer [43], and Dafny [79], symbolic execution tools such as KLEE [35], BINSEC [44],
and Owi [8], and model checkers such as CBMC [76].

Figure 2.9 illustrates the architecture of an SMT solver and provides a simplified
description of its operation. It takes SMT formulas in supported theories as input. The
SAT solver makes decisions on boolean variables and provides the interpretation to the
theory reasoning module, which, through theory combination, dispatches purified terms
based on their corresponding theory to their respective decision procedures.

31

Definition 2.16 (Purified terms). Purified terms are produced through purification. Given
a theory T and a term t, purifying the term t for the theory T consists in replacing all
its sub-terms that don’t belong to the theory T with fresh variables while keeping the sub-
terms that belong to the theory T , ensuring that the decision procedure for the theory T
only sees the terms that belong to the theory.

The decision procedures perform theory reasoning and either deduce new propagations
to share with the rest of the system, typically in the form of new equalities, inequalities,
and clause assignments, or detect a conflict. The SAT solver uses this information to
learn clauses and backtrack. This part is called the ground reasoning part because it
handles the unquantified parts of the input formulas.

The quantifiers are handled through the quantifier instantiation engine, which at-
tempts to instantiate the quantifiers by selecting values for the quantified variables. The
resulting instances are then added to the system to be handled by the ground reasoning
part. The reasoning process concludes when there are no quantifiers left to instantiate
and the SAT solver arrives at a satisfied problem, in which case it answers “sat”. Alterna-
tively, if all decisions made by the SAT solver lead to conflicts, it answers “unsat”. It can
also answer “unknown” since first-order logic is semidecidable, meaning the satisfiability
of some problems simply cannot be determined. A solver can also answer “unknown” if
it does not use a complete reasoning procedure.

Quantifier instantiation and decision-making by the SAT solver are two commonly
costly steps in SMT reasoning. Therefore, decreasing the number of new terms cre-
ated during reasoning and avoiding the application of redundant rules while maintaining
efficiency, as well as completeness in some cases when working on decidable theories,
are common optimization approaches [37, 94]. Another optimization involves improving
quantifier instantiation, which allows for smarter instantiations that are performed only
when needed in ways that make the chosen values for the variables more likely to lead to
a result, usually unsatisfiability [34, 90].

2.3.1 The SMT-LIB initiative
The SMT-LIB standard [16] is the standard language for encoding SMT formulas. It was
developed and is maintained by the SMT-LIB initiative [13]. The SMT-LIB initiative
also defines a set of standardized theories with precise syntaxes and semantics, making
it possible to use different SMT solvers that follow the standard language on problems
written in it. The SMT-LIB initiative also gathers and maintains benchmarks of SMT
problems [103], which originate from academia, industrial use cases, or were synthetically
crafted. These benchmarks are used in the SMT-COMP [12], a competition in which
SMT solvers are compared based on their performance on SMT problems categorized
into different SMT-LIB logics.

Definition 2.17 (Theory Fragment). A fragment of a theory T is syntactically restricted
subset of the formulae of the theory T that is less expressive than the full theory but can
be decidable or easier to reason over.

SMT-LIB logics are syntactic restrictions of theories defined as fragments of one or
multiple theories. Some logics, for example, restrict a theory to a quantifier-free fragment,

32

1 :sorts ((Bool 0))
2

3 :funs ((true Bool)
4 (false Bool)
5 (not Bool Bool)
6 (=> Bool Bool Bool :right -assoc)
7 (and Bool Bool Bool :left -assoc)
8 (or Bool Bool Bool :left -assoc)
9 (xor Bool Bool Bool :left -assoc)

10 (par (A) (= A A Bool : chainable))
11 (par (A) (distinct A A Bool : pairwise))
12 (par (A) (ite Bool A A A))
13)

Listing 2.1: The SMT core theory.

such as the QF_AX logic, which corresponds to the quantifier-free fragment of the array
theory. Others restrict the symbols that can be used in the theory or the different ways
in which they can be used, such as the fragments of linear integer arithmetic LIA and
integer difference logic IDL [99].

While expressiveness is one of the main advantages of SMT, it usually also implies
more complex decision procedures and reasoning approaches for the theory. It is also
possible to change the decidability of a theory or logic by making it more expressive. For
example, the theory of Real Difference Logic is decidable but becomes undecidable when
combined with uninterpreted unary predicates [27].

2.3.2 The Core Theory

The Core Theory in the SMT-LIB is represented in Listing 2.1. It serves as a common
base that is included in all SMT logics. It is used to represent propositional logic and
extends it with the following interpreted symbols:

• = (The binary equality predicate): It is applied to two terms of any sort A and
evaluates to true if they are equal, and false otherwise.

• distinct (The binary inequality predicate): It is applied to two terms of any sort A
and evaluates to true if they are disequal, and false otherwise.

• ite (If-Then-Else): It takes a boolean term called the condition and two terms of
any sort A, called respectively the consequence and the alternative. If the condition
is true, then the term is equal to the consequence, otherwise, it is equal to the
alternative.

• xor (The “exclusive or” operation): evaluates to true when the two boolean argu-
ments have distinct truth values.

33

∀x.x = x (reflexivity)

∀x, y.x = y =⇒ y = x (symmetry)

∀x, y, z.x = y ∧ y = z =⇒ x = z (transitivity)

∀f, x1, ..., xn, y1, yn.x1 = y1 ∧ ... ∧ xn = yn

=⇒ f(x1, ..., xn) = f(y1, ..., yn)
(congruence)

Figure 2.10: Semantics of the EUF logic

2.3.3 Equality and Uninterpreted Functions

The uninterpreted functions logic (UF) is an extension of the Core theory presented
in the previous section that allows expressing uninterpreted functions and sorts. The
combination of equality, boolean operators and uninterpreted functions and sorts is often
referred to as the equality and uninterpreted functions logic (EUF) [75].

Uninterpreted functions, or uninterpreted constant symbols when the functions have
no arguments, are declared function symbols that do not have predefined interpretations.
And uninterpreted sorts are sorts for which the associated sort domain is not predefined.

Unless uninterpreted functions are explicitly constrained, they can have any interpre-
tation of the appropriate sort, while uninterpreted sorts, in the satisfiable case, need to
have an interpretation that associates them with a non-empty sort domain.

Figure 2.10 illustrates the axioms that describe the semantics of EUF. Reasoning
over EUF is usually based on the Union-Find [119] data structure, as it is commonly
used to represent equivalence relations, which are by definition reflexive, symmetric, and
transitive, with equality being an example of them.

In addition to the axioms of equivalence, the congruence axiom is necessary to de-
termine that two applications of the same function or predicate symbol to the same
arguments are equal. The resulting decision procedure that includes the axioms in Fig-
ure 2.10 is known as Congruence Closure [96, 105].

The union-find data structure is used to group terms that are equal to one another into
the same set, these sets are referred to as congruence classes. Each set has a representative
term that is usually used to hold information about the congruence classes represented
by the set of terms. When two terms that are not in the same set are propagated as
equal, then their respective congruence classes (sets of terms) are merged together. If a
term was not added to any set, it is considered to be in a singleton set containing only
that term.

Inequality is also usually handled by congruence closure. This can be done by simply
adding special edges between congruence classes to indicate that they are distinct from
one another. When two congruence classes are about to be merged, the existence of
such an edge between them signifies that a contradiction has been detected, leading to a
conflict.

34

1 :sorts ((Int 0))
2

3 :funs ((NUMERAL Int)
4 (- Int Int) ; negation
5 (- Int Int Int :left -assoc) ; subtraction
6 (+ Int Int Int :left -assoc)
7 (* Int Int Int :left -assoc)
8 (div Int Int Int :left -assoc)
9 (mod Int Int Int)

10 (abs Int Int)
11 (<= Int Int Bool : chainable)
12 (< Int Int Bool : chainable)
13 (>= Int Int Bool : chainable)
14 (> Int Int Bool : chainable)
15)

Listing 2.2: The SMT theory of integers.

(p =⇒ x ≤ y) ∧ (¬p =⇒ x > y) ∧ (p ∧ x > y)

Figure 2.11: SMT formula example.

2.3.4 The Theory of Integers
Another example of an SMT theory is presented in Listing 2.2, which illustrates the

SMT theory of integers. In this theory, the sort domain of the integer terms is the set of
integers Z. The mathematical symbols −, +, and ∗ have their usual interpretations when
working with integers, as do the comparison operations <=, <, >=, and >. The symbols
div, mod, and abs represent, respectively, integer division, integer remainder, and integer
absolute value.

Figure 2.11 illustrates an SMT formula that uses both boolean operators (=⇒ and ∧)
as well as integer arithmetic operators (≤ and >). SMT solvers with a decision procedure
for the linear integer arithmetic (LIA) logic can solve such problems, whereas it is not
possible to encode such problems in a SAT solver. Listing 2.3 shows the same SMT
formula written in the SMT-LIB standard.

2.4 Constraint Programming
Constraint programming (CP) [108] is a paradigm for solving combinatorial problems
using automated deduction and search algorithms. Such problems are usually expressed
as constraint satisfaction problems (CSPs). CSPs consist of a set of variables, each with
its own sort domain, and a set of constraints, each applying over one or multiple variables,
which serve to restrict the domains of the variables. CP is used to find a solution that
satisfies the constraints over the variables in the form of an interpretation of the variables,
if such a solution exists.

Definition 2.18 (Constraint satisfaction problems (CSPs)). A constraint satisfaction

35

1 (set -logic QF_LIA)
2

3 (declare -const p Bool)
4 (declare -const x Int)
5 (declare -const y Int)
6

7 (assert (-> p (<= x y)))
8 (assert (-> (not p) (> x y)))
9 (assert (and p (> x y)))

10

11 (check -sat)

Listing 2.3: SMT formula example in the SMT-LIB standard.

problem is defined as a triplet ⟨V,D,C⟩, where V = {v1, · · · , vn} is a set of variables,
D = {D1, · · · , Dn} is the set of domains where each domain Di is the set of possible values
of the variable vi, and C = {C1, · · · , Cn} is a set of constraints, where each constraint
Ci is over a subset of variables in V and restricts the combinations of the domains of the
variables it involves.

CP research started in the 1960s and 1970s, stemming from early developments in
Artificial Intelligence [56]. The introduction of Prolog [39] was notably a significant mile-
stone, as it was an early form of a constraint programming language, solving constraints
over terms and variables using its unification algorithm. Later, in the 90s, in parallel to
the introduction of CDCL in the SAT community, CP also progressed with concepts such
as global constraints [123] and search heuristics [122]. The emergence of SMT allowed
for more bridging between SAT and SMT on one side and CP on the other [5, 53, 102].

Many concepts present in SAT and SMT are also present in CP. For example, decisions
in CP work similarly to how they work in SAT and SMT, one difference lies in how they
are used. In SAT and CDCL based SMT, decisions are made on boolean literals during
satisfiability checking, while in CP, they are also made on terms that have other sorts as
a way to prune their domains while searching for a solution. Another difference between
is within the conflicts: while in SAT and CDCL based SMT they occur on boolean
literals coming from the original problem, in CP they are more general, as they can
come from propagations, variable assignments, or global constraints. These techniques,
such as decisions and assignments on non-boolean terms, were also brought to SMT in
newer SMT techniques than the CDCL based ones such as GDPLL [87], MCSAT [92]
and CDSAT [30].

Backtracking in CP works similarly to backtracking in SAT and SMT: after a decision
is made, if it leads to a contradiction, it is necessary to backtrack to make another decision.
When it comes to learning, while it is ubiquitous in SAT and SMT solving, it is not always
present in CP, but there are approaches in CP which allow learning new constraints that
prune the search space and the decisions that can be made such as “nogoods” [72] which
are learned from contradictions.

Another important technique used in CP is constraint propagation. It is the process
through which constraints are used to restrict the domains of variables while maintaining
consistency. Constraint propagation consists of ensuring that when a constraint C1 is

36

applied to a variable v, the effect of the constraint C1 on the domain of the variable
v is taken into account by all other constraints Ci that are applied to the variable v.
Example 2.3 shows a case in which a set of constraints is not satisfiable, as it results in
an empty domain for one of the variables.

Example 2.3. Given the integer variables x, y, and z, and the constraints c1 : x ≥ 3,
c2 : y ≥ 2, c3 : x+ y = z, and c4 : z < 5, propagating the constraints results in:

• c1 sets the domain of x to [3; + inf].

• c2 sets the domain of y to [2; + inf].

• c3 sets the domain of z to [5; + inf].

• c4 results in an empty domain for z, which means that the problem is unsatisfiable.

Although constraint propagation is a notion tied to constraint programming, it is also
used in SMT, usually indirectly through theory reasoning and theory combination, but
some SMT solvers, notably Alt-Ergo [5], explicitly incorporate domains and constraint
propagators in their reasoning.

Many real-world problems can be expressed as CSPs. Therefore, CP has many ap-
plications [126]. Such applications include scheduling [32], planning [18], resource alloca-
tion [67], data mining and machine learning [47], and software [61] and hardware [125]
verification.

2.4.1 Abstract Domains in Constraint Programming
Traditionally in CP, as well as in MSFOL, domains refer to sort domains or concrete
domains, i.e. the domains associated with sorts and that represent the set of all possible
values terms from a given sort can have. But multiple efforts have been made to extend
the notion of domain to abstract domains [101, 128], as the ones that are used in abstract
interpretation [42].

Abstract domains allow propagating constraints not only over the concrete set of pos-
sible values that a term can have, but also over its properties. When working on arith-
metic terms for example, some abstract domains that can be used including the domain
of polynomials, which associates arithmetic terms to their polynomial representation and
which can allow for more constraint propagations between the term and its sub-terms.
Such domains can also allow deducing contradictions earlier and without computing the
concrete domains of the terms which is potentially costly [31].

Example 2.4 illustrates an example of the usage of an abstract domain during con-
straint propagation. In the example, it is used to prune the concrete domain of x and
find a precise value for it.

Example 2.4. Given the integer variable x ∈ [1; 3] and an abstract domain of parity
Dp = {odd, even} which associates to each arithmetic term its parity. If the constraint x
mod 2 = 0 is propagated, then x’s parity domain is updated to Dp(x) = even, from it and
the fact x ∈ [1; 3], x = 2 can be deduced from.

For convenience, “domains” is used to refer to both kinds of domains, the nature of
the domain is specified only when it is warranted.

37

1 :sorts ((Array 2))
2

3 :funs ((par (X Y) (select (Array X Y) X Y))
4 (par (X Y) (store (Array X Y) X Y (Array X Y)))
5)

Listing 2.4: Signature of the theory of arrays.

∀a, i, j, v.i = j =⇒ select(store(a, i, v), j) = v (idx)

∀a, i, j, v.
i ̸= j =⇒ select(store(a, i, v), j) = select(a, j)

(select-over-store)

∀a, b.a = b ∨ ∃(i : I).select(a, i) ̸= select(b, i) (ext)

Figure 2.12: Semantics of the theory of Arrays

2.5 The theory of Arrays
The SMT theory of arrays is based on McCarthy’s arrays, which were introduced in
1962 [85]. It is a well-studied and explored theory, and many decision procedures have
been developed for it [34, 37, 94]. The theory of arrays is frequently used in program ver-
ification to represent array-like data structures from programming languages, and is also
used to represent and reason about memory models, notably in low-level programming
languages. It is worth noting that arrays in SMT are different from arrays in most pro-
gramming languages, since in SMT they are infinite total mappings of indices to values
instead of finite ordered collections of values as is the case in programming languages.

The signature of the SMT theory of arrays, as standardized in the SMT-LIB, is
presented in Listing 2.4. The arrays in this theory are represented as mappings of terms
from a sort of indices to terms from a sort of values, represented respectively by the X and
Y sorts in Listing 2.4. The theory’s signature also shows that it supports two functions:

• select: given an array a and an index i, returns the value associated with the index
i in the array a.

• store: given an array a, an index i, and a value v, returns a copy of the array a in
which the element associated with the index i is the value v.

Figure 2.12 formalizes the semantics of the theory of arrays. The (idx) and (select-
over-store) axioms assess the semantics of the store operation by stating how to interpret
the application of a select function over a store function. The (ext) axiom, on the other
hand, represents the extensionality axiom. The SMT theory of arrays is also referred to
as the theory of arrays with extensionality, and in this context, extensionality means that
two arrays are equal when they contain the same elements at every index, which is what
is stated in the axiom (ext).

The unsatisfiable SMT problem manipulating arrays presented in Listing 2.5 asserts
that, for an array a, an index i and a value v, select(a, i) is different from v. It also

38

1 (set -logic ALL)
2 (declare -sort I 0)
3 (declare -sort E 0)
4 (declare -const i I)
5 (declare -const e E)
6 (declare -const a (Array I E))
7

8 (assert (distinct (select a i) e))
9 (assert (= (select (store a i e) i) (select a i)))

10

11 (check -sat)

Listing 2.5: Example of an SMT problem using arrays.

asserts that select(store(a, i, v), i) is different from v, which, by applying the (idx) rule, is
determined to be false. Proving that the problem is unsatisfiable.

2.5.1 Array Property Fragment
The quantifier-free theory of arrays is decidable, but as first-order logic generally is not,
neither is the theory of arrays with quantifiers. Bradley et al. explored the topic of
the decidability of the theory of arrays with quantifiers and defined the array property
fragment [9, 34], which is a decidable fragment of the quantified theory of arrays.

The array property fragment imposes some syntactic restrictions on the theory of
arrays. The theory of indices in this fragment has to be the Presburger arithmetic theory,
which consists only of the symbols {0, 1,+,−,=, <}. It also restricts quantification over
arrays to the subset ∃∗∀∗, where the universal quantifiers ∀ only quantify index variables.

An array property is defined as a formula of the form:

∀i. G(i) =⇒ F (i)

where i are index variables. G(i) is an index guard that can only contain conjunctions
or disjunctions of terms of the forms α ≤ β and α = β, where α and β are either index
ground terms, universally quantified index variables, or existentially quantified index
variables multiplied by a constant. And F (i) is a constraint on the elements that is also
syntactically restricted, such that all occurrences of quantified index variables must be
as a second argument to a select application, and select applications cannot be nested,
therefore, select(_, select(_,_)) would not be allowed.

Some interesting properties that can be expressed in this fragment include:

• Equality between two arrays a and b:

∀i. select(a, i) = select(b, i)

• Bounded equality between two arrays a and b within the bounds [l, u]:

∀i. l ≤ i ≤ u =⇒ select(a, i) = select(b, i)

39

store-elim
a = store(b, i, v)

select(a, i) = v ∧ ∀j. j ̸= i =⇒ select(a, j) = select(b, j)

exists-elim
∃i. F [i]
F [k]

where k is a vector of fresh index variables.

forall-elim
∀i. G[i] =⇒ F [i]∧
i∈In G[i] =⇒ F [i]

Figure 2.13: Inference rules for the Array Property Fragment decision procedure.

• Sortedness of an array a within the bounds [l, u]:

∀i, j. l ≤ i ≤ j ≤ u =⇒ select(a, i) ≤ select(a, j)

The decision procedure for this fragment of the theory of arrays works by reducing the
problem of deciding satisfiability in the theory of arrays to deciding the satisfiability of a
problem in EUF, Presburger arithmetic, and the array element theories. It also reduces
universal quantifiers over indices into finite conjunctions by constructing a finite set of
indices such that examining only the indices in this set is sufficient to decide satisfiability.

Figure 2.13 illustrates the inference rules used in the array property fragment decision
procedure. To solve problems in this theory fragment, they first need to be converted to
negation normal form, which is a form where negations only appear in literals.

The store-elim rule is then applied exhaustively to eliminate all store terms and replace
them with select terms. This is followed by the exhaustive application of the exists-elim
rule, which eliminates existentially quantified index terms when the existential quantifi-
cation is at the top of the formula, by replacing them with fresh index variables.

The reduction of universal quantifiers to finite conjunctions is done in three steps:

• Select a set I of index terms on which to instantiate all universally quantified indices.
The set I contains:

– All index terms t that occur as a second argument of a select application and
are not universally quantified.

– All index terms t that are constants, existentially quantified variables, addition
of them or the multiplication of a constant with an existentially quantified
variable.

– A fresh index term λ that is defined as a constant index term different from
all the index terms in I.

• Apply the forall-elim rule exhaustively, with n as the size of the vector of quantified
variables i, where i ∈ In means that the variables i range over all n-tuples of terms
in I. This step eliminates all universal quantifiers over indices and replaces them
with conjunctions over the set of the n-tuples of index terms in I.

40

(idx)
a = store(b, i, v)
select(a, i) = v

⇓
a = store(b, i, v) w = select(a, j)
i = j ∨ select(a, j) = select(b, j)

⇑
a = store(b, i, v) w = select(b, j)
i = j ∨ select(a, j) = select(b, j)

(ext) a b
a = b ∨ select(a, k) ̸= select(b, k)

Figure 2.14: Basic decision procedure for the array theory.

• Reduce to the theories of EUF, Presburger arithmetic, and the element theory
by associating each n-dimensional array variable a with an n-ary uninterpreted
function fa and replacing nested select applications select(select(select(a, i), · · ·), j)
to a with calls to fa(i, · · · , j).

2.5.2 Combinatory Array Logic
Another decision procedure for the theory of arrays that relies on the reduction of the
array theory to EUF theory is the decision procedure used in Z3, which was developed by
de Moura and Bjørner [94]. In their contribution, they present a naive decision procedure
for the theory of arrays consisting of the instantiation of the theory’s axioms, as well as
optimizations that show better performance without losing completeness.

Figure 2.14 illustrates the inference rules of the basic decision procedure for the array
theory. The rules idx and ext correspond to the axioms that have the same name in
Figure 2.12. ext states that for any pair of arrays with the same sort, they are either
equal if they contain the same elements at all indices, or they are distinct, which means
that they have at least one index (called the disequality witness and represented by the
fresh index variable k) at which the stored elements in the arrays are different. The
rules ⇓ and ⇑ correspond to the select-over-store axioms in Figure 2.12 by defining two
complementary cases for the axiom: ⇓, where the consequence of the axiom is inferred
from select(store(b, i, v), j) when i = j, and ⇑, where it is inferred from store(b, i, v)
and select(b, j) when i = j. With this decision procedure, the axioms of the theory
are instantiated to saturation, effectively reducing the array theory problems to EUF
problems.

The first optimization is achieved by avoiding the redundant application of the in-
ference rules ⇓, ⇑, and ext when their consequences are already present in the solver
state. Additional optimizations to the array decision procedure are done by replacing the
inference rules ext and ⇑ with restricted versions of them, presented in Figure 2.15.

Instead of the ext rule, two restricted versions are used: ext̸=, which introduces the
disequality witness through the fresh index variable k when two arrays are known to be

41

ext̸=
a ̸= b

select(a, k) ̸= select(b, k)

extr

(a : Array(I,E)) (b : Array(I,E)) a, b ⊆ foreign
a = b ∨ a[k] ̸= b[k]

⇑r

a = store(b, i, v) w = select(b, j) b ∈ non-linear
i = j ∨ a[j] = b[j]

Figure 2.15: Restricted extensionality and ⇑ inference rules for the array decision procedure,
with k as a fresh variable.

disequal (instead of applying the ext rule), and extr, which restricts the application of the
ext to arrays that are part of the foreign set of arrays. The foreign set comprises arrays
that appear as the index argument of a select application to another array or appear as
an argument of an uninterpreted function. As its name suggests, the foreign set is the
set of arrays which are potentially used outside the theory of arrays and which need the
application of the extensionality to reason over and propagate their equalities.

The ⇑ rule is replaced with ⇑r, a restricted version that is applied only when the
array b is in the non-linear set. An array is in the non-linear set if it is equivalent to
two distinct store applications or to a store operation on an array that is already in the
non-linear set. This set represents arrays which are not constructed from a simple chain
of store applications and that have potentially been constructed from multiple different
arrays, and on which it is therefore necessary to apply the ⇑ rule as it allows propagating
elements between those arrays from which the “non-linear” array was constructed.

In addition to the decision procedure and the optimizations, the authors also presented
extensions to the theory of arrays that can be reasoned about using the same decision
procedure. These extensions include the constant array function, denoted by K, which
creates an array where all elements have the same value, and the mapping function,
denoted by mapf , which applies a function f element-wise to a set of n arrays that have
the same index sort. These functions are formally defined as follows:

∀v, i. select(K(v), i) = v
∀a1 : Array(I,E1), . . . , an : Array(I,En), i : I.

select(mapf (a1, . . . , an), i) = f(select(a1, i), . . . , select(an, i))

The additional functions are notably used to simplify the representation of sets and
bags (or multi-sets) using the theory of arrays.

2.5.3 Weakly Equivalent Arrays
Another interesting array decision procedure was developed by Christ and Hoenicke [37].
This decision procedure works by exploiting the notion of weak equivalence over arrays
and using it to avoid unnecessary instantiations of the (select-over-store) and (ext) array

42

axioms described in Figure 2.12. Weak equivalence is represented using a weak equiva-
lence graph that links arrays with indices on which they may differ, which are obtained
by the chains of store applications that link the arrays.
Definition 2.19. A Weak Equivalence Graph GW = (V,E) is an undirected graph in
which the set of vertices V contains array terms that are linked by edges from the set E,
which contains either:

• ↔: Unlabeled edges that represent equivalence between array terms.

• i↔: Edges labeled with an index i that link two arrays a and b when a = store(b, i,_)
or b = store(a, i,_).

Definition 2.20 (Weak equivalence). Two arrays a and b are weakly equivalent if there
exists a path P between a and b in GW , denoted by a

(P)⇔ b. Consequently, a and b can
only be different on a finite set of indices.
Definition 2.21 (Weak equivalence modulo i). Weak equivalence modulo i between two
arrays a and b, denoted a ≈i b, is defined as:

a ≈i b := ∃P.a (P)⇔ b ∧ ∀j ∈ P.i ̸= j

Definition 2.22 (Weak congruence modulo i). Weak congruence modulo i between two
arrays a and b, denoted a ∼i b, is defined as:

a ∼i b := a ≈i b∨
∃a′, b′, j, k.a ≈i a

′ ∧ b ≈i b
′ ∧ i = j ∧ i = k ∧ select(a′, j) = select(b′, k)

The notions of weak equivalence, weak-equivalence modulo i and weak congruence
modulo i are tied to one another. Intuitively, two arrays a and b are:

• Weakly equivalent, denoted a (P)⇔ b, if one can be rewritten as a finite chain of store
applications over the other, which means that they can only differ on the finite set
of indices P that are involved in those store applications.

• Weakly equivalent modulo i, denoted a ≈i b, if a (P)⇔ b and i is distinct from all the
indices within the set P .

• Weakly congruent modulo i, denoted a ∼i b, if a ≈i b and there exists arrays a′ and
b′, such that a ≈i a

′ and b ≈i b
′ and select(a′, i) = select(b′, i).

Definition 2.23. Cond(_) is a function that computes a condition (a conjunction of
equalities and inequalities) under which an equivalence, weak equivalence, or weak con-
gruence holds. Condi(_) denotes the condition for a path that does not contain an edge
labeled with the index i.

Cond(a↔ b) := a = b Condi(a↔ b) := a = b

Cond(a j↔ b) := true Condi(a
j↔ b) := i ̸= j

Cond(a ≈i b) := Condi(P) where a (P)⇔ b ∧ ∀j ∈ P.i ̸= j

Cond(a ∼i b) :=


Cond(a ≈i b) if a ≈i b

Cond(a ≈i a
′) ∧ i = j∧

Cond(b ≈i b
′) ∧ i = k∧

select(a′, j) = select(b′, k)
if

a ≈i a
′ ∧ i ∼ j∧

b ≈i b
′ ∧ i ∼ k∧

select(a′, j) ∼ select(b′, k)

43

select-over-weakeq
a ≈i b i ∼ j select(a, i) select(b, j)

i ̸= j ∨ ¬Cond(a ≈i b) ∨ select(a, i) = select(b, j)

weakeq-ext
a

(P)⇔ b ∀i ∈ P.a ∼i b

¬Cond(P) ∨ ∨
i∈P
¬Cond(a ∼i b) ∨ a = b

Figure 2.16: The weakly equivalent array decision procedure inference rules.

The weakly equivalent array decision procedure consists of the inference rules in Fig-
ure 2.16 as well as the idx rule. The select-over-weakeq rule is a version of select-over-store
that propagates select applications over chains of store applications between arrays that
have select applications on them and on the same index. The weakeq-ext rule is a version
of the ext rule that takes into account the weak equivalence graph. It does so by being
applied when two arrays are linked and stating that they are either equal or they are not
weakly congruent on at least one index from the path that links them together.

It is possible to optimize the decision procedure while maintaining soundness and
completeness by decreasing the number of terms managed by it. This can be done if
the element theory is stably infinite by not applying the idx rule for every store term,
consequently not generating a new select term for every store store.

2.6 The theory of Sequences
The theory of arrays suffers from limitations that make using it to represent, reason
about, and verify the properties of more complex data structures harder without signifi-
cant extensions (additional functions and predicates) or axiomatization, eventually with
quantifiers. The first limitation is the fact that arrays from this theory are not dynam-
ically sized, since their size is determined by the number of inhabitants of the sort of
indices, while most modern programming languages have dynamically sized arrays. An-
other limitation comes from the lack of expressiveness in the theory, since it only supports
operations for selecting and storing one element at one index.

Thus, when it comes to verifying properties of a given data structure using SMT
solvers, it is more convenient to have a tailored theory that clearly and concisely describes
the semantics of the higher-level operations on that data structure. Not only does this
make verification easier for the user, but it can also pave the way for more dedicated and
efficient decision procedures for the theory. Examples of such theories are the theory of
strings and the theory of sequences, which have both sparked a lot of interest in recent
years.

Sequences are a common data structure in programming languages, although they
may be known by different names and have various implementations. Sequences can have
fixed sizes, like arrays in C, C++, Rust, OCaml, and Java, or they can be dynamic, like
vectors in C++ and Rust, ArrayLists in Java, arrays in JavaScript, and lists in Python.
In addition to the common array operations, such as storing and selecting values at
an index, some languages support higher-level operations such as concatenation, slicing,

44

mapping, filtering, and folding.
The difference between the standard SMT theory of arrays and the theory of sequences

is that sequences can have different sizes, while arrays have a fixed size determined by
the sort of the indices and the number of possible values it has. Sequences are always
indexed by integers, whereas arrays do not have such a restriction on their index sort.
Additionally, the signature of the theory of sequences is richer than that of the theory
of arrays, it includes functions for concatenation, slicing, subsequence extraction, etc.
The nth(s, i) function from the theory of sequences takes a sequence s and an index i,
returning the value stored at the i-th index of the sequence, akin to the select function in
the array theory. However, the mathematical interpretation of this function on sequences
is partial to valid indices, which are those within the bounds of the sequence. As SMT
is a total logic, such functions are totalized by considering the returned value when the
index is not within the bounds of the sequences as uninterpreted.

The theory of sequences was first formalized by Bjørner et al. [25]. Several works
have since explored its syntax and semantics [3, 25] and its decidability [57, 70]. Sheng
et al. [113] developed calculi to reason over the variant of the theory of sequences that
is implemented in cvc5 [11], the calculi are based on those developed for the theories
of strings [19, 81], which have been generalized and adapted for sequence reasoning and
combined with array reasoning [37]. The Z3 SMT solver [91] also supports the theory
of sequences, although there are no published contributions detailing its reasoning tech-
niques.

2.6.1 Existing theories
The original SMT theory of sequences, proposed by Bjørner et al. [25], is a generalization
of the theory of strings to non-character values. State-of-the-art SMT solvers such as
cvc51 [113] and Z32 support their own variations of the theory of sequences. Their sig-
natures share many symbols with the original signature, along with some additions and
deductions.

The theories of sequences of cvc5 and Z3 share the following symbols:

• seq.empty: the empty sequence

• seq.unit(v): a sequence of length 1 containing only the value v

• seq.len(s): the length of the sequence s, denoted as ℓs

• seq.nth(s, i): the value associated with the i-th index of s if i is within the bounds
of s, otherwise, an uninterpreted value

• seq.extract(s, i, l): the extracted maximal subsequence of s, starting at i of length l
if i is within the bounds of s and l is positive, otherwise, the empty sequence

• seq.++(s1, ..., sn): the concatenation of the sequences s1, ..., and sn

1cvc5’s sequence theory:
https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html

2Z3’s sequence theory:
https://microsoft.github.io/z3guide/docs/theories/Sequences

45

https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html
https://microsoft.github.io/z3guide/docs/theories/Sequences

• seq.at(s, i): a unit sequence containing the i-th value in s if i is within the bounds
of s, otherwise, the empty sequence

• seq.contains(s1, s2): true if s1 is a subsequence of s2, false otherwise

• seq.indexof(s, s′, i): the first position of s′ in s at or after i, −1 if there are no
occurrences

• seq.replace(s, s1, s2): the resulting sequence from replacing the first occurrence of
s1 with s2 in s if s1 occurs in s, otherwise, s

• seq.prefixof(s′, s): true if s′ is a prefix of s, false otherwise

• seq.suffixof(s′, s): true if s′ is a suffix of s, false otherwise

The theory of sequences of cvc5 also supports the following symbols:

• seq.replace_all(s, s1, s2): the resulting sequence from replacing all occurrences of s1
with s2 in s, s if s1 does not occur in s

• seq.rev(s): the resulting sequence from reversing s

• seq.update(s1, i, s2): a new sequence of the same size as s1, in which, if i is within
the bounds of s1, then the values from i to i + seq.len(s2) − 1 are the same values
as in s2, and the other values are the same as in s1, otherwise, it equals s1

The theory of sequences of Z3 also supports symbols to map and fold over sequences.
The first-order functions used in map and fold are expressed as arrays since higher-order
functions were not yet supported in SMT-LIB [14] when these symbols were added. For
example a function f of sort A→ B → C is actually an array of sort Array(A,Array(B,C))
and f(a, b) where a is a value of sortA and b is a value of sortB is actually select(select(f, a), b).

The symbols to map and fold over sequences in Z3 are the following:

• seq.map(f, s): the sequence of sort Seq(E’) resulting from applying f , which is of
sort E→ E’ with E as the sort of the elements of s, to all the elements of s.

• seq.mapi(f, o, s): the sequence of sort Seq(E’) resulting from applying f , which is of
sort Int → E → E’ with E as the sort of the elements of s, to all the elements of s
and their indices starting from the offset o.

• seq.fold_left(f, b, s): the result of folding over s of sort Seq(E), with an initial value
b of sort E’ using the function f of sort E’→ E→ E’.
For example, given s = seq.++(seq.unit(v0), seq.unit(v1), seq.unit(v2)):

seq.fold_left(f, b, s) = f(f(f(b, v0), v1), v2)

• seq.fold_lefti(f, o, b, s): the result of folding over the values of s of sort Seq(E)
and their indices, with an initial value b of sort E’ using the function f of sort
Int→ E’→ E→ E’, starting from the offset o.
For example, given s = seq.++(seq.unit(v0), seq.unit(v1), seq.unit(v2)):

seq.fold_lefti(f, o, b, s) = f(o+ 2, f(o+ 1, f(o, b, v0), v1), v2)

46

The seq.update function differs in the paper that describes the reasoning implemented
in cvc5 [113] from the one that is implemented in cvc5 and described in its documenta-
tion3. In the paper, it is described as a function that sets only the value of one index and
takes that value as a third argument, while in the documentation and implementation,
it takes a sequence as a third argument.

In the rest of the document, seq. will be omitted in formulas containing sequence
terms for simplicity.

In Wang and Appel’s theory of arrays with concatenation [127], the theory of arrays is
extended with length, slice, and concatenation functions, providing arrays with properties
similar to those of sequences, mainly 0-indexing and length. The theory is composed of
the following symbols:

• lengthS(s): the length of s

• nthS(i, s): if 0 ≥ i < lengthS(s) returns the i-th value of s, otherwise, then the value
is the default value of the sort of values (the theory assumes that every value sort
S has a variable dS corresponding to the default value of that sort)

• repeatS(v, n): a sequence of size n if n is positive, in which all values are v, the
empty sequence if n is negative

• appS(s1, s2): concatenates s1 and s2

• sliceS(i, j, s): a subsequence of s from max(i, 0) to min(j, l), with l as the length of
s, the empty sequence if such a subsequence does not exist

• mapf (s1, ..., sk): the sequence resulting from applying f element-wise to the n first
elements of the sequences s1, ..., sk, where
n = min(lengthS(s1), ..., lengthS(sk))

• updateS(i, s, x): returns an updated version of s in which i is mapped to x if i is
within the bounds of s. It is mentioned that the function updateS is reduced to a con-
catenation of the sequences sliceS(0, i, s), repeatS(v, 1), and sliceS(i+1, lengthS(s), s)
when i is within the bounds of s.

The mapf symbol is similar to the map function over arrays described in a paper
by de Moura and Bjørner presenting the CAL (Combinatory Array Logic) array decision
procedure [94], which produces new arrays in which each index i stores the value resulting
from the mapped function applied over the i-th elements of the n arrays on which the
map function was applied.

There are also works on the theory of arrays that extend the theory with a length
function [29] and other functions that operate over regions of arrays, such as the C
programming language memset and memcpy functions, as well as lambda terms [52].
These extensions provide the theory of arrays with more expressiveness and properties
that are also desired in theories of sequences.

3cvc5’s sequence theory: https://cvc5.github.io/docs-ci/docs-main/theories/sequences.
html

47

https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html
https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html

R-Nth
x = nth(y, i)

i < 0 ∨ i ≥ ℓy ||
0 ≤ i < ℓy ∧ ℓk = i ∧ y = k++unit(x)++k′

R-Update
x = update(y, i, z)

i < 0 ∨ i ≥ ℓy ∧ x = y ||
0 ≤ i < ℓy ∧ ℓk = i ∧ ℓk′ = 1∧

y = k++k′++k′′ ∧ x = k++unit(z)++k′′

R-Split
x = w++y++z x = w++y′++z′

ℓy > ℓy′ ∧ y = y′++k ||
ℓy < ℓy′ ∧ y′ = y++k ||
ℓy = ℓy′ ∧ y′ = y

Figure 2.17: The reduction rules for the nth and update functions and the R-Split rule used for
normalization.

2.6.2 Reasoning approaches
To reason over sequences, two main approaches can be identified. The first is based on
string reasoning [19, 81] using word equations [58], which was generalized to support
sequences, since sequences can be seen as a generalization of strings to non-character
elements. This approach is referred to as the BASE calculus in [113]. The second, referred
to as the EXT calculus, is an extension of BASE with dedicated array reasoning for the
seq.nth and seq.update sequence functions, which respectively serve the role of the select
and store functions in the array theory. The array reasoning in EXT is based on weak-
equivalence array reasoning [37].

In [127], the decision procedure is also based on array reasoning since the proposed
theory is an extension of the theory of arrays. However, the array reasoning in it is
distinct from the one in [37], as it is an extension of the array property fragment decision
procedure [34].

This section presents an overview of these reasoning approaches, focusing on their
specificities and the implications they have on the efficiency of the reasoning.

BASE calculus

This calculus is based on the one described in [81] for strings. The general idea behind the
calculus is to reduce the sequence operations into concatenation operations, effectively
reducing the problem to a word equation problem with length constraints. The calculus
also uses splitting rules that split sequences appearing in concatenations into smaller
subsequences as a way to create normal forms for sequences, making it possible to compare
them based on their contents.

Figure 2.17 illustrates how the nth and update functions are reduced to concatenations
of sequences. In it k, k′ and k′′ represent fresh sequence variables. The R-Nth rule states
that given x = nth(y, i), either the index i is not within the bounds of y, in which case the
value x is uninterpreted, or y is propagated as equal to a concatenation of fresh sequence

48

variables with unit(x) as the i-th element of the sequence. R-Update works similarly: if i
in x = update(y, i, z) is not within the bounds of y, then x = y, otherwise, x is propagated
as equal to the concatenation of k, unit(z), and k′′, with k of length i, and y is propagated
as equal to the concatenation of k, k′, and k′′, where k, k′, and k′′ are fresh sequence
variables. The R-Split rule normalizes concatenations of sequences, when a sequence is
equal to two concatenations with a common prefix w and differ in the rest of the sequence
terms, either the two next sequence terms after the prefix in each sequence have the same
length, in which case they need to be propagated as equal, or one needs to be split over
the other by propagating, for example, that y = y′++k when ℓy > ℓ′

y, with k being a fresh
sequence variable.

EXT calculus

The EXT calculus extends the BASE calculus by adding dedicated array reasoning for
the nth and update functions. Therefore, instead of reducing them to concatenations of
sequences, they are handled natively with array reasoning.

The rules of the EXT calculus are shown in figure 2.18, these rules replace the R-
Nth and R-Update rules in figure 2.17. The rules use z1, . . . , zn to denote fresh sequence
variables and e, e′ to denote fresh element variables.

In EXT, reasoning over nth and update is not done through reduction to concatenation
as in BASE, instead, the reasoning is inspired by array reasoning and works as follows.
The Nth-Concat rule is applied when the nth function is called on a sequence that is a
concatenation of other sequences and consists of selecting the appropriate subsequence
on which to apply the nth function by choosing the one whose bounds contain the in-
dex. Update-Concat and Update-Concat-Inv similarly apply update applications when the
resulting sequence, or the sequence on which update is applied, is a concatenation. The
Nth-Unit and Update-Unit rules respectively select and store one element at one index in
a unit sequence when the index is within the bounds of the sequence, which in this case
means that it is equal to 0.

Arrays with concatenation calculus

Appel and Wang introduced an extension of the theory of arrays with length, slice,
and concatenation functions [127]. They also defined the array property fragment with
concatenation which, contrary to the array property fragment without concatenation [34],
is not undecidable in general. The main addition of the array property fragment with
concatenation to the one without concatenation is allowing index terms of the form
i + n and comparisons between i + n and j + m in index guards, where i and j are
quantified variables and n and m are constants. This addition is necessary to reason over
concatenation, but it enables index shifting. This phenomenon occurs when two accesses
to an array occur in a quantified formula at the indices i and i+n, where i is a universally
quantified variable. A formula is said to be tangle-free when no index shifting occurs in
it. The authors proved that a tangle-free fragment of the array property fragment with
concatenation is decidable.

The authors also introduced the index propagation graph (IPG), which is a graph that
is used to detect entanglement. The vertices of the IPG are array variables and quantified
variables, and each edge is labeled with an integer term representing the weight of the

49

Nth-Concat
x = nth(y, i) y = w1++ . . .++wn

i < 0 ∨ i ≥ ℓy ||
0 ≤ i < ℓw1 ∧ x = nth(w1, i) || . . . ||

n−1∑
j=1

ℓwj
≤ i <

n∑
j=1

ℓwj
∧ x = nth(wn, i−

n−1∑
j=1

ℓwj
)

Update-Concat
x = update(y, i, v) y = w1++ . . .++wn

x = z1++ . . .++zn∧
z1 = update(w1, i, v) ∧ · · · ∧
zn = update(wn, i−

n−1∑
j=1

ℓwj
, v)

Update-Concat-Inv
x = update(y, i, v) x = w1++ . . .++wn

y = z1++ . . .++zn∧
w1 = update(z1, i, v) ∧ · · · ∧
wn = update(zn, i−

n−1∑
j=1

ℓwj
, v)

Nth-Unit
x = nth(y, i) y = unit(u)

i < 0 ∨ i > 0 || i = 0 ∧ x = u

Update-Unit
x = update(y, i, v) y = unit(u)

(i < 0 ∨ i > 0) ∧ x = unit(u) || i = 0 ∧ x = unit(v)

Nth-Update
nth(x, j) y = update(z, i, v) x = y or x = z

j < 0 ∨ j ≥ ℓx ||
i = j ∧ 0 ≤ j < ℓz∧ nth(y, j) = v ||
i ̸= j ∧ 0 ≤ j < ℓz∧ nth(y, j) = nth(z, j)

Figure 2.18: The inference rules of the EXT calculus.

50

length-app
Ψ(lengthS(appS(a, b)))

Ψ(lengthS(a) + lengthS(b))

nth-app
Ψ(nthS(appS(a, b), i))

0 ≤ i < lengthS(a) =⇒ Ψ(nthS(a, i)) ||
lengthS(a) ≤ i < lengthS(a) + lengthS(b) =⇒ Ψ(nthS(b, i)) ||

¬(0 ≤ i < lengthS(a) + lengthS(b)) =⇒ Ψ(dS)

Figure 2.19: Reduction rules for ground array terms involving the appS function. Terms at the
top of the rule are replaced by terms at the bottom of the rule in a formula Ψ.

edge. The graph is initialized by adding, for each term of the form nthS(i + n, a), an
edge from the array a to the index variable i with weight n and an edge from i to a with
weight a. For each comparison of the form i + n ≤ j + m, an edge is added from the
index variable i to the index variable j with weight n −m and from j to i with weight
m− n. It is proven that if the index propagation graph contains a cycle whose weight is
not zero, then the formula is not tangle-free, making it undecidable.

The IPG is also used to define the index set I that is used for the instantiation of
quantified index variables. A function δ that takes a vertex as an argument and returns
a weight is defined by arbitrarily choosing a reference vertex uc from each connected
component in the graph and considering that δ(uc) = 0. Then, δ is defined for the rest
of the vertices as:

δ(u) = w + δ(v)

for each pair of vertices u and v such that there is an edge from u to v with the weight
w.

The index set I is then constructed from an empty set for each connected component
in the IPG as follows:

• For every array variable a, add −1− δ(a) to I.

• For every occurrence of nthS(n, a), where n is a term that does not contain any
universally quantified variables, add n− δ(a) to I.

• For every occurrence of i + n ≤ m or m ≤ i + n in index guards, where i is a
universally quantified variable and n, m are terms without quantified variables,
add m− n− δ(i) to I.

Similarly to the array property fragment decision procedure, the decision procedure
for the array property fragment with concatenation works in steps. The first step consists
of applying reduction rules to the theory’s ground terms. Figure 2.19 illustrates the rules
corresponding to the reduction of ground terms involving appS applications.

51

forall-nth-app
Ψ(∀i. G(i) =⇒ F (nthS(appS(a, b), i)))

Ψ



∀i. G(i) ∧ 0 ≤ i < lengthS(a)
=⇒ F (nthS(a, i))

∧ ∀i. G(i)∧
lengthS(a) ≤ i < lengthS(a) + lengthS(b)

=⇒ F (nthS(b, i− lengthS(a)))
∧ ∀i. G(i)∧

¬(0 ≤ i < lengthS(a) + lengthS(b))
=⇒ F (dS)



Figure 2.20: Rewrite rule for quantified array property formulas involving the appS function.
Terms at the top of the rule are replaced by terms at the bottom of the rule in a formula Ψ.

The second step consists of simplifying array terms under quantifiers one variable at
a time. In the forall-nth-app rule in Figure 2.20, the variable i is one of the variables in
the vector of quantified variables i. The rule turns a quantified array property formula
into a simplified conjunction of quantified array property formulas.

The problem is then classified as tangle-free or not to determine its decidability. If
the problem is tangle-free, the third step is to instantiate the quantifiers using the index
set I. This is done by replacing every quantification ∀i. F (i) with ∧

e∈I+δ(i), where:

• The notation I + k means {j + k | j ∈ I}.

• The notation e ∈ I + δ(i) means {e | ∀t. et ∈ I + δ(it)}, where each it is a variable
in i and e is the vector of all instantiations et.

This effectively replaces universal quantifiers with conjunctions over finite sets.

2.7 Colibri2
Colibri2 is a solver for SMT problems that behaves as an SMT solver, but that is actu-
ally a CP solver. Its reasoning relies on techniques from CP solving, such as powerful
propagations, (abstract) domains and scheduling.

Colibri2 is a reimplementation of the COLIBRI CP solver [84], which was developed
and used since the early 2000s and ranked first on multiple floating-point arithmetic
benchmarks in the SMT-COMP. COLIBRI is implemented in Eclipse Prolog [109] where
the notions of constraints, variables, and domains, as well as scheduling are already de-
fined. It supports the quantifier-free fragments of the bit-vector, floating-point arithmetic,
and array theories. It also supports the theories of integers and reals by encoding them
using bit-vectors and floating-point numbers, respectively.

Since Colibri2 is implemented in OCaml, it has its own simplified implementations of
a scheduler, domains, and domain propagation engine. Therefore, in Colibri2, integers
and reals are not encoded as bit-vectors and floating-point numbers, but implemented
natively using, respectively, the Zarith [88] library, which is based on GMP [64], and the
Calcium library [71]. COLIBRI also relies on GMP, but it opts for finite domains, as

52

is traditional in CP. Colibri2 also supports quantifiers, algebraic data types, arrays, and
sequences, and allows implementing Shostak theories [114] using domains.

2.7.1 Architecture
The architecture of Colibri2 is composed of various inter-dependent components, includ-
ing nodes, the union-find environment, daemons, and the scheduler. Since Colibri2 is
based on CP solving and not SMT, its architecture is not built around a SAT solver, and
it does not use one. Which is why it lacks clause learning, contrary to most SMT solvers.
This makes the cost of decisions significant, which is why they are avoided when possible
by using scheduling heuristics and powerful propagations. On the other hand, the lack
of learning has allowed for a simpler architecture and made the implementation easier.

Node

Ground

ClosedQuantifiers

Theory terms

Dom1

Poly

ADT

. . .

Values

Q or Z or ADT or . . .

registered?

updated?

set?

Figure 2.21: Relations between different concepts at the core of Colibri2.

Nodes and the union-find environment

In SMT solvers, congruence closure is often used to reason over equality and inequality
between terms, and all the information on terms is regrouped in the congruence closure’s
e-graph [91]. Colibri2 takes a different approach that is similar to that of COLIBRI. In
this approach, a union-find data structure is used to reason over equivalence between
terms while congruence is implemented and used separately as a domain over terms that
propagates new equivalences between them that are deduced by applying the congruence
axiom (presented in Figure 2.10). This union-find is a separate generic entity, other
information on terms, such as their domains, is stored separately and associated with the
nodes.

Nodes represent semantic views of terms in equivalence classes. In each equivalence
class, one node is the representative. A node does not correspond to a specific term, but
to the semantic value which represents all terms that are equivalent to one another at
a certain point. The nodes are maintained and updated as the union-find is updated.
This approach allows for the independent and non-intrusive development of theories and
domains outside the core engine and without interfering with existing theories, similar to
CC(X) [40].

53

Figure 2.21 illustrates different concepts at the core of Colibri2. On the left side are
shown different ways in which nodes can be created, on the right side examples of domains
are provided, at the bottom are shown types of values that a node can have and in italic
are shown events on which daemons can wait on.

As illustrated in Figure 2.21, nodes are created in different ways:

• By converting a ground term that comes from the original problem into a node.

• From a formula that is a closed quantifier, which is a quantified formula in which
all variables are quantified.

• From theory terms, which are terms created by theories and do not necessarily
occur in the original problem.

Figure 2.21 also shows that each node is associated with a set of domains. In the
implementation, an environment env in the form of a record with two fields is used to
handle the union-find used for equivalence and the association between nodes and their
domains:

• reprs : Node.t→ Node.t
A mapping representing the equivalence classes of nodes, it associates each node n
to the representative of its equivalence class r, which is by default n itself, i.e.:

reprs[n] =

r if n ∈ Dom(reprs) and reprs[n] = r

n otherwise

• doms : Node.t→ D → R
A mapping of each representative node r to a mapping of each domain identifier D
to the domain’s representation for the node r if it exists. The mapping returns an
option for convenience and it is defined as follows:

doms[n][D] =


None if r /∈ Dom(doms)
None if D /∈ Dom(doms[r])
Some(d) otherwise, with d = doms[r][D]

with r as the representative of the node n.

Values are also associated to the nodes, the values are elements of a universe A which
represents all the possible values that any node can have. The value of a node also belongs
to its sort domain.

Values can be set for nodes in three different ways:

• From ground terms: when a node is generated from a ground term that is a literal
value itself.

• Through propagation: in some cases, propagations can restrict the domains of a
node n until it is precise enough to determine a single value v to which the node
can be equal. When that value is obtained, it is set for n.

54

• From model generation: when a value v is generated for a node n, another node nv

is created for the value v, which is then merged with the node n.

A value can also be set to a node when it does not have one and is merged with a
node that has one. A contradiction is raised, when two nodes are merged with distinct
values.

When a model is generated for a given problem, the model is in the form of a mapping
of sort Node.t→ A where each node is associated to a value.

Domains

Domains in Colibri2 can be concrete or sort domains, which represent the possible values
that a node can have, or abstract domains, which represent other useful properties.

Different kinds of nodes are associated with different domains. For example, arith-
metic nodes are associated with a domain of interval unions, which states the possible
values that the node can have, as well as a polynomial domain that holds their normalized
polynomial representation. ADT nodes, on the other hand, are not associated with these
two domains, but instead have a domain that represents their possible values, such as
the set of possible constructors if the ADT is a sum type, for example.

Definition 2.24 (Domains in Colibri2). A domain D in Colibri2 can be formalized as a
tuple ⟨R, PA, equal⟩ where:

• R: the set of domain representations.

• PA : R → 2A

Given a model A and an element of the domain d ∈ R, PA(d) denotes the set of
values in the universe A represented by d under A.

• equal : R → R→ Bool
Checks whether two domain representations have the same semantic interpretation
with a given model. It is defined for any d1, d2 ∈ R as:

equal(d1, d2) =⇒ ∀A. PA(d1) = PA(d2)

For convenience, it will be denoted as an equality “=” between domain representa-
tions.

In the formalization of domains in Colibri2 presented in Definition 2.24, PA depends
on the modelA in order to support relational domains, which are domains whose elements
can contain other nodes. An example of such a domain is the polynomial domain, where
the polynomial representation r of a node can contain other nodes, therefore, to compute
PA(r), a model A is needed to retrieve the values of the nodes that may appear in r.

Colibri2 provides two ways to define domains in the implementation Dmerge and Dinter.

Definition 2.25 (The domain definition Dmerge). A domain D in Colibri2 can be de-
fined as the tuple ⟨R, PA, equal,mergeD⟩, where R, PA, and equal are the same as in
Definition 2.24, and merge is:

55

• mergeD : env→ (n1 : Node.t)→ (n2 : Node.t)→ env
Ensures that the nodes n1 and n2 have the same domain D in env.

When a domain is defined usingDmerge, it can be interacted with in the implementation
through two functions:

• get_domD : env→ (n : Node.t)→ R option
Returns env.doms[n][D], i.e. the domain D of the node n if it is set.

• set_domD : env→ (n : Node.t)→ (d : R)→ env
Sets the domain D of the node n with the domain representation d. Ensures that:
env.doms[n][D] = d

Definition 2.26 (The domain definition Dinter). A domain in Colibri2 can also be de-
fined as the tuple ⟨R, PA, equal, interD⟩, where R, PA, and equal are the same as in
Definition 2.24, and interD is:

• interD : R → R→ R option
Computes the intersection between two domain representations and returns it if it
is not empty, and returns None otherwise.
For any d1, d2 ∈ R, if inter(d1, d2) succeeds and the result of the intersection is
d ∈ R, then the function satisfies:

inter(d1, d2) = Some(d) =⇒ ∀A. ∀v ∈ A. v ∈ PA(d) =⇒ v ∈ PA(d1)∧ v ∈ PA(d2)

Otherwise, if inter(d1, d2) fails, then it satisfies:

inter(d1, d2) = None =⇒ ∀A. ∀v ∈ A. ¬
(
v ∈ PA(d1) ∧ v ∈ PA(d2)

)

Definition 2.26 presents an alternative definition of domains in Colibri2. With this
definition, in addition to get_dom and set_dom, it is possible to update the domain of a
node with:

• upd_domD : env → (n : Node.t) → (d : R) → env: Updates the domain D of the
node n. If n already had a domain d′, it ensures that its new domain is interD(d, d′),
otherwise, sets n’s domain to d.

In practice, when the inter function in Dinter returns None, a contradiction is raised
as that implies that the two domain representations do not intersect, i.e.:

∀A. PA(inter(d1, d2)) = ∅

which means that no model can satisfy the resulting domain from the intersection.
In the implementation, when a domain is defined using Definition 2.26, a merge func-

tion is defined for it using the inter function as illustrated in Listing 2.6.

56

1 let merge env n1 n2 =
2 match get_dom env n1, get_dom env n2 with
3 | None , None → env
4 | Some d1, None → set_dom env n2 d1
5 | None , Some d2 → set_dom env n1 d2
6 | Some d1, Some d2 →
7 match inter d1 d2 with
8 | None → raise Contradiction
9 | Some d →

10 let env = set_dom env n1 d in
11 set_dom env n2 d

Listing 2.6: Definition of the merge function using the inter function.

The merge functions, the one that is part of Dmerge and the one defined using inter
for Dinter, are used when merging two nodes. When the merger of two nodes is requested,
before updating their representatives in env.reprs, their domains are first conciliated us-
ing the domain’s respective merge functions, ensuring that they have the same domain
representations for all domains before merging. A conflict is raised otherwise.

In fact, in Colibri2 values are represented as a domain Dv which associates to each
node n a given unique value v to ensure that if two nodes n and n′ are merged with
different values v and v′ then that leads to a contradiction during the merger. Values
are also represented with ground terms, so each value v has an associated unique ground
term gv, ensuring that nodes that are merged with gv have the value v. Colibri2 also
ensures that when the value of a node n is set to v, the node is merged the ground term
gv, ensuring that all nodes that have the same values are merged. This last propagation
is done through daemons.

Daemons and events

Daemons are propagations that are waiting for the triggering of some event before being
applied. Figure 2.21 shows the most used kinds of events:

• A new theory term is registered: used to initialize the domains of the node produced
from the term and to add useful propagations associated with it.

• The domain of a node changed: used to propagate the changes to other nodes that
depend on it, or whose domains depend on it.

• A value of some kind appeared: mainly used to set the domains of its corresponding
node to a singleton.

These events can be found in two flavors: they can either wait for such an event to
occur on any node, or wait for it to occur on a specific node.

In order to help reason about and implement the propagations, when a propagation
requests the merger of two nodes, the merger is not done immediately but scheduled to
be done after the end of the execution of the propagation.

Daemons can either be repetitive, meaning that they indefinitely wait on their event
and run whenever it occurs, as many times as it occurs, or they run only once when the

57

event occurs for the first time. They can also be parametrized to run directly after their
creation if the event on which they are waiting occurred in the past, otherwise, they wait
for it to occur again. They can also be made to run only after n occurrences of the event,
instead of running whenever it occurs.

Scheduler

Since multiple daemons can wait on the same event, it is therefore necessary to order
their execution. Naively using a stack of daemons to run can lead to starvation, since two
daemons can trigger each other’s events indefinitely, while a daemon that could deduce
an inconsistency might be stuck inside the stack.

It is also necessary to differentiate daemons by their cost. It is often preferable to
delay costly daemons until some cheaper ones have run, since that might help the costlier
ones. An example of a costly daemon is the simplex algorithm, which can be aided by
propagations on the interval domains of the nodes involved in the arithmetic problem it
solves. Another costly daemon is the quantifier instantiation daemon, which can lead to
starvation by creating too many new terms. This phenomenon is also called a matching
loop [78].

To remedy these issues, Colibri2 uses a scheduler based on the efficient time wheel
data structure (similar to §6.2 in [124]), which makes it possible to define cycles of time
ticks on which to run daemons. Cheap daemons, for example, can be scheduled to run in
one tick, while costlier ones can run every 64 ticks.

The scheduler also manages the execution phases of Colibri2, of which there are four:

1. Propagation phase:

• Registering of theory terms
• Initialization of domains
• Constraint propagations

2. Decision phase: Making decisions, after every decision, go back to the propagation
phase

3. Last-effort phase: Costly propagations, can go back to the decision and propagation
phases

4. Fix-model phase: Model generation

Colibri2 starts with the propagation phase, in which it registers the terms of the
problem and propagates the constraints that come from them. Once all propagations
are done, the decision phase starts, during which the solver makes decisions that were
created during the propagation phase. Decisions are created when some propagation
needs additional information to know if and how to run, and it therefore needs to decide
on that information before running the different possible scenarios.

In some cases, propagations need additional information to know how to be applied,
so decisions are registered to split cases and do the right propagations in each case.

58

After each decision, new propagations can be applied, so the propagation phase is
restarted. New decisions will be made only when the solver either finds a conflict and
backtracks, or when all propagations are complete.

Once all initial propagations and decisions are made, the last-effort phase begins,
during which costly propagations are made, with a notable one of them being quantifier
instantiation. The next last-effort phase will only start when all registered decisions and
scheduled propagations from the previous one are done.

When a last-effort phase leads to a conflict, the solver backtracks, and takes a new
branch of the last decision. If all the branches of the last decision were explored, a new
decision is made. The solver then restarts the propagation phase. The propagations of
the last-effort phase can be reclassified to belong to the propagation phase if they lead
to a conflict. The reason for this reclassification is that if a last-effort propagation leads
to a conflict, then it would be better to perform it earlier, during propagation, in hopes
of detecting the conflict sooner.

If a last-effort phase ends and no decisions or propagations were scheduled by it,
then the fix-model phase starts. Contrary to how it’s usually done in SMT solvers,
Colibri2 does not use a sophisticated theory combination framework that guarantees the
existence of a model when no conflict is found. It is therefore necessary, to guarantee
soundness, for Colibri2, after generating a model, to check that the original problem is
indeed satisfied by it before answering that the problem is satisfiable. During the fix-
model phase, Colibri2 will choose values for all the nodes for which a value has not been
found through constraint propagation. The values are chosen by taking into consideration
the domains of the nodes. Colibri2 will iterate over the choices of values until a model is
found.

After a certain number of iterations, by default 1000, if none of the generated models
are satisfying, the scheduler closes the branch and acts as if a conflict was detected and
backtracks to make a different decision. If, after exploring all branches, no satisfying
model is found, then Colibri2 answers with “unknown-branch-cut”, which means that no
conflict was detected, but the solver did not manage to produce a model. This result
usually indicates that some propagations are not powerful enough.

2.7.2 Theory implementations
As previously mentioned, theories in Colibri2 are not combined using a theory combi-
nation framework that constrains how they interact with the rest of the system and
with each other, for example, by ensuring that they handle only their purified terms. In
Colibri2, every theory can see every term and every other theory. Theories are defined
generically by simply registering a converter function, which can receive all terms, and
each theory can choose which terms it is interested in. Terms are therefore not purified
in Colibri2, and interactions between theories are easier. In fact, theories have access to
the domains of other theories and can register daemons on terms from other theories as
well.

Another notable difference with most SMT solvers is in boolean reasoning. In SMT
solvers, it is often a special kind of reasoning, as it is done through the SAT solver and
not seen as a theory. In Colibri2, booleans are handled by a theory of booleans, which
is like any other theory. That is also the case in the CDSAT theory combination [30]

59

Union-find Scheduler

Booleans

Floating-Point
Arithmetic

Integer, Real and BV
Arithmetic

Algebraic
Data Types

Arrays (n-Indexed) Sequences

Figure 2.22: The interactions between the theories, the scheduler, the daemons, and the union-
find in Colibri2.

framework, where the theory of booleans is like any other theory.
Figure 2.22 illustrates the interactions between the theories in Colibri2. It shows that

the boolean theory does not use any other theory, it only depends on the union-find
module which handles equivalence between terms. All the other theories depend on the
theory of booleans and the union-find. They use the boolean theory to create decisions
on boolean terms, notably equality and difference terms. The scheduler and union-find
also interact with one another. When an event occurs, the daemons waiting on that event
initially have read-only access to the union-find. That access allows them to inspect it
and decide whether they still need to run or not. If the daemons need to run, they are
scheduled to run and when they run they can bring changes, or write, on the union-find
as they have read-write access to it at that point. The union-find module notifies the
scheduler of the changes that happen to it. Figure 2.22 also shows that the integer,
real, and bit-vector arithmetic theories are joined together, since they share most of the
domains they use, notably the interval domain.

In addition to the access policy that Colibri2 has when it comes to interactions with the
union-find, Colibri2 also relies on backtrackable data structures [7] to notably ensure that
domains and other properties that theory modules might define for nodes are properly
backtracked when the scheduler backtracks.

60

Chapter 3

Arithmetic I: Domains, Propagators
and Relations

In programming languages, working with integers, rationals, and reals has historically
been done using fixed-size bit-vectors and floating-point numbers. But arbitrary-sized
integers, rationals, and reals are present in many programming languages, thanks to
libraries such as GMP [64] and Calcium [71], which allow using numbers whose sizes
grow as needed to represent their values. They are also often used in specification over
programs manipulating fixed-size numbers, to reason over overflows for example as they
are more convenient.

It is therefore necessary to be able to manipulate and reason over them in a software
verification context. That is the purpose of the SMT theories of integer and real linear
and non-linear arithmetic. While it is a well-studied topic [1, 49], reasoning approaches
still tend to be costly and do not scale well, whether on the decidable theories (linear
and non-linear real arithmetic, and linear integer arithmetic) or the undecidable theory
of non-linear integer arithmetic.

In fact, some approaches even use arbitrary-sized integers and reals to reason over
bit-vectors and floating-point numbers, respectively. This is done through the modulo
operator mod for bit-vectors and through conversion to reals for floating-point numbers.

This chapter discusses how integer and real arithmetic terms are reasoned about in
the Colibri2 CP solver. It begins by presenting the various domains that are used and the
kinds of propagations that are done in Section 3.1. It then presents the labeled union-find
data structure, introduced in Lesbre, Lemerre, Ait-El-Hara, and Bobot [80], as well as
how it is used in Colibri2 for the constant difference relation over arithmetic terms in
Section 3.2.

3.1 Arithmetic reasoning in Colibri2
In Colibri2, integers and reals share the same domains and mainly the same reasoning
approaches, relying heavily on domains and powerful propagations. In fact they can
even be part of the same equivalence class, when a real is converted from an integer
for example. The domains used by the integer and real arithmetic decision procedures
include the domain of interval unions, the domain of polynomials, the product domain,
and the congruence domain.

61

3.1.1 Arithmetic domains
These domains are designed to represent various properties essential for efficient reasoning
over real and integer arithmetic. Four of them are presented below.

Interval Union Domain

An interval is a typed set of values that is defined by its bounds. Given two reals a and
b such that a ≤ b, an interval of the values from a to b can be closed:

• [a; b] = {i ∈ R | a ≤ i ≤ b}

The interval can also have one open and one closed bound to include only a or b
within its values:

• [a; b[= {i ∈ R | a ≤ i < b}

•]a; b] = {i ∈ R | a < i ≤ b}

It can also exclude both bounds by having two open bounds:

•]a; b[= {i ∈ R | a < i < b}

An interval can also be left-unbounded or right-unbounded:

•]− inf; b] = {i ∈ R | i ≤ b}

•]− inf; b[= {i ∈ R | i < b}

• [a; + inf[= {i ∈ R | a ≤ i}

•]a; + inf[= {i ∈ R | a < i}

If it is unbounded on both sides, then it represents all real values:

•]− inf; + inf[= R

Alternatively, an empty interval is equal to the empty set ∅1.
When working with integers, an integer interval is denoted as Z [a; b], with a and b its

integer bounds. The operations described above also apply on integer intervals, and can
be adapted by changing the set of values in the interval definitions from R to Z.

Another difference is that, with integer intervals, an open bound on the left (resp. on
the right) can be replaced with a closed bound of the successor (resp. predecessor) of the
bound, i.e.:

• Z]a; b] = Z [a+ 1; b]

• Z [a; b[= Z [a; b− 1]
1In Colibri2, since intervals are used in the interval domain, empty intervals are forbidden as they

represent a contradiction, indicating that no value of the associated term can satisfy the problem’s
constraints.

62

• Z]a; b[= Z [a+ 1; b− 1]

• Z]− inf; b[= Z]− inf; b− 1]

• Z]a; + inf[= Z [a+ 1; + inf[

Usual arithmetic operations on these intervals are supported, given two intervals A
and B:

• A ⋄B = {x ⋄ y | x ∈ A ∧ y ∈ B}, with ⋄ ∈ {+,−, ·, /}

Which comes down to:

• [a; b] + [c; d] = [a+ c; b+ d]

• [a; b]− [c; d] = [a− d; b− c]

• [a; b] · [c; d] = [min(a · c, a · d, b · c, b · d); max(a · c, a · d, b · c, b · d)]

• [a; b] / [c; d] = [a; b] · (1/ [c; d]), where:

– 1/ [c; d] = [1/d; 1/c], when 0 ̸∈ [c; d]
– 1/ [c; 0] =]− inf; 1/c]
– 1/ [0; d] = [1/d; inf[
– 1/ [c; d] =]− inf; inf[, when 0 ∈ [c; d]

In addition to Euclidean division presented above, Colibri2 also supports truncated
and floored division, as well as Euclidean, truncated, and floored modulo, square root,
power, and other operations ...

The definitions of these operations can easily be expanded to intervals that have open
bounds. If a is an open bound and b is a closed one, the resulting a⋄b is an open interval.

These operations also apply on constants, which are simply singleton intervals. For
example subtracting and adding a constant c to an interval [a; b] is the same as:

• [a; b] + c = [a; b] + [c; c]

• [a; b]− c = [a; b]− [c; c]

The union and intersection operations on intervals are also supported, given two
intervals A and B:

• A ∪B = {x | x ∈ A ∨ x ∈ B}

• A ∩B = {x | x ∈ A ∧ x ∈ B}

Over-approximation is often used when trying to compute an interval union over
disjoint intervals:

• [a; b] ∪ [c; d] = [a; d], when a ≤ b < c ≤ d

63

This leads to a loss of precision that can be significant, especially if the difference
between the two intervals is large or unions are chained over multiple intervals. Therefore,
to obtain better precision when doing arithmetic reasoning, it is necessary to use unions
of intervals.

Example 3.1. Given an unconstrained term of sort real x, its initial interval domain
is unset, it is therefore]− inf; + inf[(also denoted as ⊤) by default. If the propagation
x ̸= 0 is made, then the new interval domain of x will be]− inf; 0[∪]0; + inf[.

The same operations are defined on unions of intervals. Given the interval unions A
and B:

• A = ⋃n
i=1 Ii

• B = ⋃m
j=1 Jj

where all intervals Ii (resp. Jj) are disjoint, for any binary operation ⋄ ∈ {+,−, ·, /},
the operations over the interval unions are defined as:

• A ⋄B = ⋃n
i=1

⋃m
j=1(Ii ⋄ Jj)

where Ii ⋄ Jj is computed using standard interval arithmetic.
The interval union domain DI in Colibri2 is defined with Dinter, where:

• RI : An interval union ⋃n
i=1 Ii

• PA : (r : RI)→ 2A

The subset of values included within the interval union: {i | i ∈ r}

• equal : (r1 : RI)→ (r2 : RI)→ Bool
Defined as equality between the interval unions r1 and r2:

(∀x ∈ r1. x ∈ r2) ∧ (∀x ∈ r2. x ∈ r1)

• inter : RI → RI → RI option
Defined as:

let inter (r1 : RI) (r2 : RI): RI option =
let r = r1 ∩ r2 in
if r = ∅ then None else Some r

This domain is used to do propagations. For example, to determine that two terms
x and y are distinct if their interval domains are disjoint. It is also used to select values
during model generation for arithmetic terms.

64

Domain of Polynomials

Polynomials are terms of the form ∑
i civi + c, where c is a constant arithmetic term, ci

are non-zero constants called the coefficients, and vi are variable terms that are either a
single variable or a product of variables. The ∑

i civi part of the polynomial is referred
to as the variable part, and c is the constant part.

Addition and subtraction are supported on polynomials. Given two polynomials p1
and p2, such that p1 = ∑

i c1,iv1,i + c1 and p2 = ∑
j c2,jv2,j + c2, a constant c3, and an

operation ⋄ ∈ {+,−}:

• p1 ⋄ p2 = ∑
k(c1,k ⋄ c2,k)vk + ∑

i′ c1,i′v1,i′ ⋄∑
j′ c2,j′v2,j′ + (c1 ⋄ c2)

where the variable terms vk are those that appear in both p1 and p2, v1,i′ are those
that appear in p1 only, and v2,j′ are those that appear in p2 only.

• p1 ⋄ c3 = ∑
i c1,iv1,i + (c1 ⋄ c3)

Multiplication and division are also supported between polynomials and constants,
given an operation ⋆ ∈ {·, /}:

• p1 ⋆ c3 = ∑
i(c1,i ⋆ c3)v1,i + (c1 ⋆ c3)

The domain of polynomials in Colibri2 associates to each arithmetic node a unique
normalized polynomial representation. It is an example of a relational domain. A rela-
tional domain of a node is one which can depend on other nodes, i.e. elements of that
domain can contain other nodes. The polynomials are represented as a pair (c,mv), where
c is the constant, and mv is a map associating to each variable node in the polynomial
vi its non-zero coefficient ci. If a variable term’s coefficient is zero, then that variable is
not added to the map mv.

If a variable term vi has its polynomial domain set to pi, then vi is replaced by pi in the
polynomials in which it occurs. This ensures that the variable terms in the polynomials
are always as simple as possible, and normalizes the polynomials for all arithmetic terms,
which makes performing operations on them easier.

The domain of polynomials DP oly in Colibri2 is defined with Dmerge, where:

• RP : A polynomial p = (c,mv)

• PA : (r : RP)→ 2A

The singleton set of the value to which the polynomial evaluates to with the model
A.

• equal : (p1 : RP)→ (p2 : RP)→ Bool
Defined as the equality between the polynomials p1 and p2. Since these are normal-
ized, this is a syntactic equality.

• merge : env→ Node.t→ Node.t→ env
Defined as:
let merge env (n1 : Node.t) (n2 : Node.t): env =

match get_dompoly env n1, get_dompoly env n2 with
| None , None → env

65

| Some p1, None →
set_dompoly env n2 p1

| None , Some p2 →
set_dompoly env n1 p2

| Some p1, Some p2→
let r = p1 − p2 in
let (c, m) = r in
if m = ∅ then

if c = 0 then
let env = set_dompoly env n1 r in
set_dompoly env n2 r

else
raise Contradiction

else
let (ci, vi) = Map. max_binding m in
let m′ = Map. remove vi m in
propagate env vi ((m′ + c)/ci)

where the propagate function propagates that the variable term vi is equal to the
polynomial ((m′ + c)/ci) and substitutes its occurrences with it. After the substi-
tution in the DP oly domains p1 and p2 of the nodes n1 and n2, p1 and p2 become
equal.

This domain is mainly used as a convenient way to handle arithmetic terms in their
polynomial form and perform operations on them without creating the corresponding
node for each polynomial produced while performing these operations. Notably, when
computing intermediary results, the number of produced polynomials can be high, and
creating a node for each one would be detrimental to performance, as each new node
must be registered and assigned its own domains, constraints, and propagations. Since
this is normally unnecessary, it is preferable to avoid creating too many useless terms, as
that would slow down performance.

Product Domain

The product domain, also called the domain of monomials, associates to each non-
constant arithmetic term the set of variable products to which it is equal. A product
is in the form of a pair (c,mp), where c is a constant and mp is a map associating to each
variable vi a power pi to which it is raised, and that is different from zero.

This domain used as a basis for two other domains: the sign domain and the absolute
value domain, since these two properties can be deduced from the product.

For example, if x = a · b, such that a = 2 · v2
1 and b = 3 · v3

2, then x = 6 · v2
1 · v3

2, and
the resulting product domain of the term x is (6, {v1 7→ 2; v2 7→ 3}). And if the sign of
v2 is known to be positive, then the sign of x will also be known to be positive.

Similarly to the domain of polynomials, this domain is also normalized by substituting
all occurrences of a term t in other product domains with the product domain of t, when
it is set.

The product domain DP rod in Colibri2 is defined with Dinter, where:

• Rprod: A set of products (ci,mi).

66

• PA : (r : Rprod)→ 2A

The singleton value that is computed from product by substituting the variables
by their interpretations. If there are multiple products, then either they all result
in the same value, or it is a contradiction.

• equal : (P1 : Rprod)→ (P2 : Rprod)→ Bool
Checks whether the sets of products P1 and P2 are equal.

• inter : (P1 : Rprod)→ (P2 : Rprod)→ Rprod option
Since non-linear reasoning in Colibri2 is limited, this inter function is particular:
for each p1 ∈ P1 and p2 ∈ P2, the function solve (presented in Listing 3.1) is called.
It can either refine the two products or join them if no solution is found.

The solve function takes two pairs as arguments: (u1, (c1, p1)) and (u2, (c2, p2)), where
(c1, p1) and (c2, p2) are two products that were propagated as equal to one another, and
u1 and u2 are the variables in p1 and p2 that are “unknown”, meaning that it is not known
whether their values can be 0 or not, while all other variables are known to be non-zero.
The function returns:

• AlreadyEqual: if the products are equal.

• Contradiction: if solving the product equality leads to a conflict.

• Unsolved: if solve is unable to solve the product equality.

• Subst m: if the product equality is solvable and new equalities are deduced. These
equalities are provided as a map m, which maps variables to the products to which
they are equal.

The source code of the solve function is illustrated in Listing 3.1. It essentially does
some straightforward simplifications, such as when one of the products is equal to 0 (lines
30 and 31), or when there are no unknown variables (lines 32 to 38).

Otherwise, non_zero is called with (u1, (c1, p1)) and (u2, (c2, p2)). If u1 = ∅, it tries
to find a new equality between a variable of power one and the division between the two
products (lines 10 to 20). If u1 contains only one element n that also appears in u2, an
equality is propagated between n and the rest of the products (lines 22 to 25). In all
other cases, the product equality is not solved and both products are kept. If the call
to non_zero with (u1, (c1, p1)) and (u2, (c2, p2)) returns Unsolved, then non_zero is called
again with the arguments swapped.

Modular arithmetic congruence Domain

When reasoning over arithmetic, modular arithmetic [62, 63] plays an important role,
as it allows for quick deductions and helps avoid slow, potentially infinite, convergence
during propagations when the unsatisfiability of a problem can be easily deduced through
modularity.

In the modular arithmetic congruence domain, an arithmetic term t is associated with
a pair (a, b), where a and b are rationals that respectively represent the divisor and the

67

1 let equal_to_zero u (c, p) =
2 if u = ∅ then
3 if c = 0 then AlreadyEqual else Contradiction
4 else if Map. cardinal u = 1 then
5 Subst (Map.map (fun _ → 0) u)
6 else Unsolved
7

8 let non_zero (u1, (c1, p1)) (u2, (c2, p2)) =
9 if u1 = ∅ then

10 try
11 Map.iter (fun n q1 →
12 let q2 = Map. find_def 0 n p2 in
13 if q1 − q2 = 1 then
14 let (c, p) = ((c2, p2)/(c1, p1)) in
15 let p = Map. remove n p in
16 raise (Solved (n, (c, p)))
17) p1;
18 Unsolved
19 with Solved (n, (c, p)) →
20 Subst (Map. singleton n (c, p))
21 else if Map. cardinal u1 = 1 then
22 let (n, q) = Map. choose u1 in
23 if not (Map.mem n u2) then
24 let (c, p) = ((c2, p2)/(c1, Map. remove n p1))1/q in
25 Subst (Map. singleton n (c, p))
26 else Unsolved
27 else Unsolved
28

29 let solve (u1, (c1, p1)) (u2, (c2, p2)) =
30 if c1 = 0 ∧ p1 = ∅ then equal_to_zero u2
31 else if c2 = 0 ∧ p2 = ∅ then equal_to_zero u1 (c1, p1)
32 else if u1 = ∅ ∧ u2 = ∅ then
33 match ((c1, p1)/(c2, p2)) with
34 | One → AlreadyEqual
35 | Cst _ → Contradiction
36 | Var (q, n, p) →
37 let p = p−1/q in
38 Subst (Map. singleton n p)
39 else
40 match non_zero (u1, (c1, p1)) (u2, (c2, p2)) with
41 | Unsolved →
42 non_zero (u2, (c2, p2)) (u1, (c1, p1))
43 | r → r

Listing 3.1: Implementation of the solve function used in the product domain.

68

remainder. This means that the term t is of the form aZ + b, where Z represents any
integer.

Traditionally, modular arithmetic works on integers, i.e. a and b are usually integers.
However, when reasoning over both integer and real/rational arithmetic, it is useful to
extend modular reasoning to rationals, due to conversions between integers and ratio-
nals. Example 3.2 shows a case in which this extension is useful, and how rationals are
introduced into the modular arithmetic domain.

Example 3.2. Given an integer term ti that has its modular arithmetic domain set to
(a, b), and a real term tr such that tr = 0.5 · of_int(ti), where of_int is a function that
takes an integer and converts it to a real. Then the modular arithmetic domain of tr will
be set to (a/2, b/2), with a/2 and b/2 as rationals.

By default, all integer arithmetic terms are associated with the pair (1, 0), which
means that they can be any integer.

The modular arithmetic domain DMod in Colibri2 is defined with Dinter, where:

• Rmod = Q∗Q: A pair of rationals (a, b) representing the divisor and the remainder.

• PA : (r : Rmod)→ 2A

The set of terms that are of the form aZ+b, for a modular arithmetic domain (a, b).

• equal : ((a1, b1) : Rmod)→ ((a2, b2) : Rmod)→ Bool
Comes down to checking whether a1 = a2 and b1 = b2.

• inter : ((a1, b1) : Rmod)→ ((a2, b2) : Rmod)→ Rmod option
Defined as:
let inter ((a1, b1) : Rmod) ((a2, b2) : Rmod): Rmod option =

let b = b1 − b2 in
if a1 = a2 then

if a1 | b then Some (a1, b1) else None
else

let (g, ux, _) = gcd a1 a2 in
if g | b then

let l = lcm a1 a2 in
let r = b1 + a1 ∗ (b/g) ∗ ux in
Some (l, r)

else None

Where | is the divisibility operator (a | b is true if a divides b), gcd computes the
greatest common divisor between two terms, and lcm computes the least common
multiple.

The modular arithmetic domain is used to quickly detect contradictions when two
terms with incompatible modular representations are merged. It is also used in combina-
tion with the interval domain during propagation to further refine the interval domain,
and during model generation to restrict the kinds of terms that can be generated and to
ensure that they respect their modular representation in addition to falling within their
interval domain.

69

3.1.2 Propagators
To ensure consistency between the constraints applied to arithmetic terms, it is necessary
to propagate them. To do so, a generic waiting system is implemented in Colibri2, which
creates daemons that wait on the domains of terms. When these domains are updated,
the daemons will ensure that the domains of terms that depend on them are also updated.

The domain of intervals is one of the domains for which the generic waiting system
is used. Given a binary operation ⋄ ∈ {+,−, ∗, /}, with ⋄−1 as − if ⋄ is + and / if ⋄
is ∗ (and inversely). Given a constraint of the form x = y ⋄ z, such that Ix, Iy, and Iz

are respectively the interval domains of x, y, and z, the daemons wait on changes to the
domains of x, y, and z such that:

• If the domain of x changes to I ′
x, the domains of y and z are respectively updated

with I ′
x ⋄−1 Iz and I ′

x ⋄−1 Iy

• If the domain of y changes to I ′
y, the domains of x and z are respectively updated

with I ′
y ⋄ Iz and Ix ⋄−1 I ′

y

• If the domain of z changes to I ′
z, the domains of x and y are respectively updated

with Iy ⋄ I ′
z and Ix ⋄−1 I ′

z

Such propagations are scheduled one after another until a fixpoint is reached. That
is, when additional propagations no longer change the domains of the terms.

Example 3.3. Given the terms x ∈ [0; 200], y ∈ [0; 10], and z ∈ [0; 10], and the con-
straints c1 : x = y · z, c2 : y ≤ 5, and c3 : x > 50:

• c1 updates the domain of x to [0; 100], and a daemon is created for it.

• c2 updates the domain of y to [0; 5], which, through the daemon, updates the domain
of x to [0; 50].

• c3 results in a contradiction, since no value x ∈ [0; 50] can satisfy the constraint.

3.2 Labeled Union-Find and The Constant Differ-
ence Relation

This section begins with a reminder about the union-find data structure [120] in Sec-
tion 3.2.1. It then introduces the labeled union-find data structure [80] in Section 3.2.2,
which is an extension of the classical union-find data structure that is used to represent
weaker relations than equivalence.

One such relation is the constant difference relation between arithmetic terms, pre-
sented in Section 3.2.3. It is used to represent constraints of the form a = b+ c, where a
and b are arithmetic terms and c is a constant.

Finally, Section 3.2.4 explains how a Shostak theory [17] can be used to detect constant
difference relations, as well as equalities and disequalities between arithmetic terms.

70

3.2.1 The Union-Find data structure
The union-find data structure [120], also called the disjoint-set data structure, was de-
signed to organize elements into disjoint sets. It is notably used to represent equiv-
alence relations and as the basis for congruence closure in automated reasoning (see
Section 2.3.3).

In the union-find data structure, sets are usually represented as trees, where the root
element is called the representative of the set.

Let E be the sort of the elements in the union-find. The union-find data structure
maintains a mapping π : E → E, such that for any element t:

• π[t]:

– If t ∈ Dom(π): π[t] is the parent of t in the tree that represents the set to
which t belongs in the union-find.

– If t ̸∈ Dom(π) either:
∗ t is the root of a tree and does not have a parent which makes it the

representative of the set it is part of.
∗ t was not added to the union-find and is therefore not part of any tree.

In this case it is considered as being in its own singleton set with itself as
the representative.

• π[t← t′]: updates π by setting t′ as the parent of t.

1 let find π (x : E): E =
2 if x /∈ Dom(π) then x
3 else
4 let p = π[x] in
5 if p = x then x
6 else find π p
7

8 let union π (x : E) (y : E): unit =
9 let xr = find π x in

10 let yr = find π y in
11 if xr = yr then ()
12 else
13 if rand ()
14 then π[xr ← yr]
15 else π[yr ← xr]

Listing 3.2: Implementations of the find and union functions in a union-find.

The union-find data structure is used through two functions, find and union, imple-
mentations of which are shown in Listing 3.2. As illustrated, the find function takes an
element and returns the representative of the set to which it belongs, while the union
function takes two elements: if they already belong to the same set (i.e. have the same
representative), nothing is done. Otherwise, their respective sets are merged by selecting
the representative of one of them to be the new representative and setting the other as
its child.

71

1. union(a, b): 2. union(c, d):

3. union(b, d): 4. find(d):

a

b

a

b

c

d

a

b c

d

c a b

d

Figure 3.1: Example of the usage of a union-find data structure.

Various techniques are used to improve the performance of this data structure. A
notable one is path compression, which is used when calling find(x) for any element x.
It consists in setting π[y ← find(x)] for every node y on the path that find traverses
from x to its representative. This effectively makes all those elements point directly to
the representative, allowing future calls to find on them to avoid traversing the full path
again, unless the representative changes.

Another optimization is union by rank, which is a heuristic used when calling the
union function on two elements x and y that belong to different sets. The optimization
consists in choosing the root of the tree with the higher rank as the new representative of
the resulting set. The rank of a tree is an upper bound on its height, computed when the
tree is created, and not recomputed when its height is reduced due to path compression
after calls to find. The purpose of this optimization is to minimize the increase in tree
height.

These optimizations are commonly used when the union-find data structure is used
for equivalence relations. As mentioned in Section 2.3.3, it is also used as a basis for
congruence closure in which case variations of these optimizations are used [48, 105]
which take into account the congruence axiom presented in Figure 2.10 and applications
of functions to elements of the data structure.

Figure 3.1 illustrates an example of how a union-find data structure works. The first
two calls to union simply join the elements {a, b} and {c, d}. The third call uses the union
by rank heuristic. Since the two trees have the same rank (1), a is arbitrarily chosen as
the representative of the resulting tree. Finally, when find(d) is called, path compression
is applied, so d’s parent changes from c to a.

3.2.2 The Labeled Union-Find data structure
While the union-find data structure is used to represent equivalence relations, the labeled
union-find [80] was developed as an extension of the union-find to parametrized equiva-
lence relations where the edges in the union-find are labeled. The labels in the labeled

72

union-find must satisfy the group axioms presented in Definition 3.1. These properties
are necessary for the construction and soundness of the labeled union-find, as well as
for enabling path compression with labeled edges, and computing the relations between
elements that are in the same class.

An example of such weaker relations is the constant difference relation which puts
in relation two (real or integer) arithmetic terms x and y parametrized by a constant
distance c such that x = y + c. With the labeled union-find, the value of the constant
distance between arithmetic terms that are in relation with one another is expressed
through the labels, which with the addition operation form a group.

Definition 3.1 (Group). A group is defined by a non-empty set G and a binary operation
⊕ : G×G→ G, called the composition operation, that combines two elements of G and
produces an element of G, and that satisfies the following requirements:

• Associativity: ∀x, y, z ∈ G. (x⊕ y)⊕ z = x⊕ (y ⊕ z)

• Existence of a neutral element eL ∈ G:

∀x ∈ G. x⊕ eL = x ∧ eL ⊕ x = x

• Existence of an inverse element x−1 ∈ G for each x ∈ G:

∀x ∈ G. x⊕ x−1 = eL ∧ x−1 ⊕ x = eL ∧ (x−1)−1 = x

The labeled union-find is defined by the tuple: ⟨E,L,⊕,merge, conflict⟩, where E is
the sort of elements in the labeled union-find, L is the sort of labels, and ⊕ : L× L→ L
is a transitive label composition operation, such that the pair (L,⊕) forms a group.

The merge function determines what needs to be done when two elements are in
relation with one another and the relation is parametrized with the neutral element eL

of the labels L, while the conflict function handles the case in which two elements are
in relation with one another through two relations that are parametrized with different
labels.

For example, when working on constant difference relations in the context of auto-
mated reasoning where the composition operation is addition + and the neutral element
is 0 then:

• Given x = y+ 0, the merge function will have to propagate that x and y are equal.

• Given x = y + c1 and x = y + c2 such that c1 ̸= c2, the conflict function will have
to propagate a contradiction.

A mapping ρ : E → E × L is maintained, which associates each element x with a
pair (p, dp), where p is the parent of x in the tree that represents x’s class in the labeled
union-find, and dp is the label on the edge from x to p. If x has no parent, then p = x
and dp = eL.

Another mapping γ : E → (L→ E) associates each element x to a mapping in which
a label d−1

i is mapped to each child node ni of x. Such that the label d−1
i represents the

inverse of the label di on the edge from ni to x.

73

1 let find ρ (x : E): E ∗ L =
2 if x /∈ ρ
3 then (x, eL)
4 else
5 let (p, dp) = ρ[x] in
6 if p = x then (p, dp) (* dp = eL *)
7 else
8 let (r, dr) = find ρ p in
9 (r, dp ⊕ dr)

10

11 let add_nonrepr (ρ, γ) (x : E) (d : L) (r : E): unit =
12 if d = eL then merge x r
13 else
14 let rm = γ[r] in
15 match Map. find_opt d rm with
16 | Some y →
17 ρ[x← ∅];
18 merge x y
19 | None →
20 ρ[x← (r, d)];
21 let rm = Map.add d−1 x rm in
22 γ[r ← rm]
23

24 let add_relation (ρ, γ) (x : E) (d : L) (y : E): unit =
25 let (xr, xd) = find ρ x in
26 let (yr, yd) = find ρ y in
27 if xr = yr then
28 if d ̸= xd ⊕ y−1

d then
29 conflict (ρ, γ) x y d (xd ⊕ y−1

d)
30 else
31 if rand ()
32 then
33 let dxryr = x−1

d ⊕ d⊕ yd in
34 add_nonrepr (ρ, γ) xr dxryr yr

35 else
36 let dyrxr = y−1

d ⊕ d−1 ⊕ xd in
37 add_nonrepr ρ yr dyrxr xr

38

39 let get_relation ρ (x : E) (y : E): L option =
40 let (xr, xd) = find ρ x in
41 let (yr, yd) = find ρ y in
42 if xr = yr

43 then Some (xd ⊕ y−1
d)

44 else None

Listing 3.3: Implementations of the functions in a labeled union-find.

The labeled union-find differs from the classical union-find mainly in the operations it
supports. Listing 3.3 shows implementations of its functions. The find function behaves

74

1. add_relation(b, lb, a): 2. add_relation(d, ld, c):

3. add_relation(c, lc, b): 4. find(d):

a

b

lb

a

b

c

d

lb ld

a

b c

d

lb lc ⊕ lb

ld

b a c

d

lb lc ⊕ lb

ld ⊕ lc ⊕ lb

Figure 3.2: Example usage of the labeled union-find data structure.

similarly to that in Listing 3.2, and the add_nonrepr function is an internal auxiliary
function that adds a non-representative element as a child with a label to a representative
element.

Since the labeled union-find represents relations that are parameterized by a label,
the union function is replaced with add_relation, which takes the label on the edge
as an extra argument. Lines 25-26 show that if the two nodes already have the same
representative but the provided label differs from the one that is computed from their
positions in the tree, then a conflict occurs. The conflict function is a user-provided
function that is called to handle such situations, in practice, it either raises a contradiction
or tries to reconcile the labels when appropriate.

Another useful additional function is get_relation, which takes two nodes, computes
and returns the label that represents the relation between them, if such relation exists.

Figure 3.2 illustrates how the labeled union-find works. Compared to Figure 3.1, the
key differences are:

• The use of add_relation, which takes a label as an additional argument, instead of
union.

• The usage of label composition:

– When classes are merged in step 3 to compute the label between the old
representative c and the representative of the resulting class a.

– During path compression in step 4 to compute the new label from d to the
representative a resulting from path compression.

In its implementation in Colibri2, the labeled union-find also supports a daemon that
waits for a representative to become a non-representative, which occurs when sets are

75

merged. This daemon allows registering hook functions:

hook : (or : E)→ (δ : L)→ (nr : E)→ unit

These are called when a representative or is no longer a representative and starts pointing
to node nr with an edge labeled with δ.

Star topology

The most efficient topology for propagating relations between elements that are in the
same tree is the star topology, in which all non-representative elements have a unique
direct edge to the representative. This can be achieved with a labeled union-find, since
the labels follow the group axioms.

1 let add_relation (ρ, γ) (x : E) (d : L) (y : E): unit =
2 let (xr, xd) = find ρ x in
3 let (yr, yd) = find ρ y in
4 if xr = yr then
5 if d ̸= xd ⊕ y−1

d then conflict (ρ, γ) x y d (xd ⊕ y−1
d)

6 else
7 if rand ()
8 then
9 let dxryr = x−1

d ⊕ d⊕ yd in
10 add_nonrepr (ρ, γ) xr dxryr yr;
11 Map.iter (fun d′−1 n →
12 add_nonrepr (ρ, γ) n (d′ ⊕ dxryr) yr

13) (γ[xr]);
14 γ[xr ← ∅]
15 else
16 let dyrxr = y−1

d ⊕ d−1 ⊕ xd in
17 add_nonrepr (ρ, γ) yr dyrxr xr;
18 Map.iter (fun d′−1 n →
19 add_nonrepr (ρ, γ) n (d′ ⊕ dyrxr) xr

20) (γ[yr]);
21 γ[yr ← ∅]

Listing 3.4: Implementation of the add_relation function in the labeled union-find data
structure in which the trees follow the star topology.

To do so, the implementation of the add_relation function from Listing 3.3 needs to
be replaced by the one in Listing 3.4. The difference lies in lines 9-14 and 16-21, when
adding a relation between two elements x and y that belong to different classes in which
the representatives are respectively xr and yr, instead of simply making one representative
a child of the other (e.g. making yr the child of xr), the new add_relation function will
add a representative and all the non-representative elements in its class as children of the
new representative. This ensures that the trees always follow the star topology.

There are multiple advantages to relying on this topology. It is notably the most
efficient for computing relations between elements in a tree, since computing a relation
requires at most one composition (when both elements are non-representatives).

76

1. add_relation(b, lb, a): 2. add_relation(d, ld, c):

3. add_relation(c, lc, b): 4. find(d):

a

b

lb

a

b

c

d

lb ld

b a c

d

lb lc ⊕ lb

ld ⊕ lc ⊕ lb

b a c

d

lb lc ⊕ lb

ld ⊕ lc ⊕ lb

Figure 3.3: Example of the usage of the labeled union-find data structure following the star
topology.

Another advantage is merge deduction, since all non-representatives ni have an edge
labeled with di to the representative r, if a new non-representative n2 is added to r with
an edge labeled with d2, and there already exists a non-representative n1 with an edge
labeled with d1 to r such that d1 ⊕−1 d2 = eL (i.e. d1 = d2), then the merge function is
called on n1 and n2, in other words, a merge is deduced between n1 and n2. This would
not be doable straightforwardly if n2 were attached to a deeper element in the tree.

To go further, ensuring that {eL 7→ r} ⊂ γ[r] holds for each representative r allows
deducing mergers with the representative whenever a non-representative is added with
label eL.

Figure 3.3 is a modified version of Figure 3.2 in which the star topology is followed.
In this case, the call to add_relation(c, lc, b) in step 3 immediately applies the path
compression between d and a as part of the class merger, and the call to find in step 4
does not change the structure of the tree.

Normalization

Since labels can be any set of values that respect the group axioms, they can, for example,
be polynomials, since:

• Composition is addition on polynomials: (comp(x, y) = x+ y).

• The neutral element eL is 0: (∀x. x+ 0 = 0 + x = x).

• The inverse function is negation: (inv(x) = −x).

As mentioned in Section 3.1.1, in Colibri2 polynomials are normalized. Whenever
the polynomial domain of a variable term is set, the variable term is replaced in all the
polynomials in which it occurs with its new polynomial domain. Therefore, to maintain
this normalization in the labeled union-find as well, it is necessary to be able to substitute
a label with a new one when its normal form changes. If normalization is not maintained,

77

some deductions might be missed, as labels can be syntactically distinct yet semantically
equivalent.

1 let subst_label (ρ, γ) (x : E) (d1 : L) (d2 : L): unit =
2 let (r, _) = find ρ x in
3 if d2 = eL then merge x r
4 else
5 let rm = γ[r] in
6 let rm = Map. remove d−1

1 rm in
7 match Map. find_opt d2 rm with
8 | Some y →
9 ρ[x← ∅];

10 merge x y
11 | None →
12 ρ[x← (r, d2)];
13 let rm = Map.add d−1

2 x rm in
14 γ[r ← rm]

Listing 3.5: Implementation of the subst_label function in the labeled union-find data
structure in which the trees follow the star topology.

Listing 3.5 shows an implementation of the subst_label function, which takes an
element x and two labels d1 and d2, such that d1 is the current label on the edge from
x to the representative of its class, and d2 is the new label meant to replace d1 for
normalization purposes. For this function to be usable, it is necessary to maintain a
mapping from labels to the elements that serve as sources for the edges in which these
labels occur.

3.2.3 Constant Difference Relation
The constant difference relation is a binary relation between arithmetic terms that is
parametrized by a constant. It associates to a term x a term y with a parameter constant
c to represent that x = y+ c. This relation has many uses, notably, it helps with equality
and inequality detection. Given x = y + c, if c = 0, then x = y can be deduced, and if
c ̸= 0, then x ̸= y can be deduced. The relation can also serve for constraint propagation
between arithmetic terms that have a constant difference between them.

In practice, the relation specifically associates polynomials of the form pk = ∑
i civi+ck

that share the same variable part ∑
i civi and differ only in the constant part ck. In

Colibri2, the constant difference relations are represented using a labeled union-find data
structure, in which the sort of elements E is the semantic values that represent arithmetic
terms, and the sort of L is the sort of real (resp. integer) constants, and ⊕ is addition
on real (resp. integer) constants. The merge function does the propagation of equalities,
while the conflict function simply raises a contradiction.

The implementation of the labeled union-find for this relation differs from the generic
one. In the original, the representative of a given set is chosen arbitrarily as operations are
performed on the data structure. In this implementation, for each set of arithmetic terms
sharing the same variable part, the term corresponding to the variable part p0 = ∑

i civi

is used as the representative of the set. The other terms are then of the form pj = p0 +cj,
such that j ̸= 0 and each cj is unique and different from zero. The edges in the labeled

78

union-find go from each non-representative term pj to the representative p0 and are
labeled by the constant difference cj.

This relation uses polynomials, but it is also used by the domain of polynomials as
it helps in normalizing them. Whenever a polynomial p = ∑

i civi + c is created, each
variable term vi is replaced by pk = ∑

i ci(ri+δi)+c, where the pair (ri, δi) is obtained from
calling the find function of the labeled union-find that represents the constant difference
relations on vi. That is, ri is the representative of vi with respect to the constant difference
relation. To maintain this normalization, whenever there is a representative change from
ri to r′

i with a label δ′, every occurrence of ri in a polynomial term is replaced by r′
i + δ′.

Whenever two elements x and y are propagated as equal, another normalization is
done by adding a relation between x and y with an edge label eL, ensuring that two
different elements in the labeled union-find do not represent the same semantic values
and that the labeled union-find knows they are equal.

3.2.4 Shostak Theories and Constant Difference Relations
Some constant difference relations can appear explicitly in the constraints that occur in
a given problem. Given the arithmetic terms x, y, and z, and the constraints C1 : x = p0,
C2 : y = x+ c1, and C3 : z = x+ c2, where p0 is a zero constant polynomial and c1 and c2
are constants, the constraint C2 represents a constant difference relation between x and
y with the constant c1, and C3 represents a constant difference relation between x and z
with the constant c2.

However, other constant difference relations do not appear explicitly and need to be
computed. One way to do that is by using a Shostak theory solver [17, 112, 114] over
linear arithmetic.

A Shostak theory T is defined in Barrett, Dill, and Stump [17], with a signature Σ
that does not contain predicate symbols, a canonizer function canon, and a solver function
solve. The theory also has to be convex, i.e. any set of constraints from the theory that
entails a disjunction of equalities also entails at least one of these equalities.

A Shostak theory T is able to decide if a given set of equations E in Σ implies an
equality t1 = t2 in T .

The solve function produces a substitution from an equation, and the canon function
applies the substitution and normalizes a term (T ∪E |= t1 = t2 if and only if canon(t1) ≡
canon(t2), where ≡ denotes syntactic equality).

The algorithm incrementally computes equisatisfiable sets Si of equations where the
left-hand side of each equation is a variable that appears only once in the set. These sets
of equations are considered as substitutions of the variables with their right-hand sides.

The theory of linear real arithmetic is a good example of a Shostak theory. In it, the
canon function is obtained from an ordering on the variables and a simplification of the
arithmetic terms, and the solve function consists of Gaussian elimination (expressing one
variable as a linear equation using the others).

Example 3.4. Given the set of equations:

E = {
e1︷ ︸︸ ︷

−z + y − u = 0,
e2︷ ︸︸ ︷

x+ 2z = 2z − u,
e3︷ ︸︸ ︷

−t− 2y = z + 2v,
e4︷ ︸︸ ︷

z − 2 = −y − v,
e5︷ ︸︸ ︷

w + 4y = u− 2v + 4}

79

Given σi ≜ solve(ei), with S0 ≜ ∅ and Si ≜ σi[Si−1] ∪ σi for i ≥ 1, where σi[Si−1] is
the application of the substitution σi to the set Si−1. The Shostak theory solver processes
the equations as follows:

• With i = 1 and solve({
e1︷ ︸︸ ︷

−z + y − u = 0}) = {u = y − z} (Rewriting):

– σ1 = {u = y − z}
– S1 = {u = y − z}

• With i = 2 and solve({
e2︷ ︸︸ ︷

x+ 2z = 2z − u}) = {x = z − y} (after applying the sub-
stitution {u = y − z} in e2: x + 2z = 3z − y, and subtracting 2z from both sides:
x = z − y):

– σ2 = {x = z − y}
– S2 = {u = y − z, x = z − y}

• With i = 3 and solve({
e3︷ ︸︸ ︷

−t− 2y = z + 2v}) = {t = −2y − 2v − z} (Rewriting):

– σ3 = {t = −2y − 2v − z}
– S3 = {u = y − z, x = z − y, t = −2y − 2v − z}

• With i = 4 and solve({
e4︷ ︸︸ ︷

z − 2 = −y − v}) = {z = −y − v + 2} (Rewriting):

– σ4 = {z = −y − v + 2}
– σ4[S3] = {u = 2y + v − 2, x = −2y − v + 2, t = −y − v − 2}
– S4 = {u = 2y + v − 2, x = −2y − v + 2, t = −y − v − 2, z = −y − v + 2}

• With i = 5 and solve({
e5︷ ︸︸ ︷

w + 4y = u− 2v + 4}) = {w = −2y−v+2} (With rewriting:
w = u − 4y − 2v + 4, applying the substitution σ1: w = −z − 3y − 2v + 4, and
applying the substitution σ4: w = −2y − v + 2):

– σ5 = {w = −2y − v + 2}
– S5 = {u = 2y + v − 2, x = −2y − v + 2, t = −y − v − 2, z = −y − v + 2,
w = −2y − v + 2}

With S5 and through canon: y = −w and x = w are deduced. It is also possible to
deduce from S5 that z = t+ 4.

The entailed equalities between variables (such as x = w in S5 in Example 3.4)
can be found by keeping a reverse mapping M from the canonized right-hand side to
a representative of the left-hand side for each equality. This is useful for propagating
equalities among theories.

Moreover, a union-find-like data structure ∆ can be used to remember that x = w
and store the right-hand side, −2y − v + 2 in S5, only once at the representative of x
and w (as described in Conchon, Contejean, Kanig, and Lescuyer [40]). Additionally, it
avoids substituting in both definitions of x and w if future substitutions of their variables
y or v need to be made.

80

Extension with a Labeled Union-Find

A labeled union-find data structure can be used to further factorize the equations and
find disequalities between variables. Given a set of labels L that follow the group ax-
ioms, an extension to a Shostak theory requires, in addition to the canon function, a
canon_rel function that takes a term t and returns a representative term t′ and a label l:
canon_rel(t) = (t′, l).

Proposition 3.1 (Equality). For any two terms t1 and t2, with canon_rel(t1) = (t′1, l1)
and canon_rel(t2) = (t′2, l2):

t′1 = t′2 ∧ l1 = l2 ⇐⇒ t1 = t2

Proposition 3.2 (Disequality). For any two terms t1 and t2, with canon_rel(t1) = (t′1, l1)
and canon_rel(t2) = (t′2, l2):

t′1 = t′2 ∧ l1 ̸= l2 =⇒ t1 ̸= t2

Definition 3.2 (Group Action). Given a group G and a set S, a group action A is a
function:

A : G× S → S

such that the following properties hold:

• For eL, the neutral element in the group G:

∀x ∈ S. A(eL, x) = x

• Associativity:
∀g, h ∈ G, x ∈ S. A(g,A(h, x)) = A(g ⊕ h, x)

where ⊕ is the composition function of the group G.

A group action function A that rebuilds a term from a term and a label is also needed.
Formally, if canon_rel(t) = (t′, l), then A(t′, l) = canon(t). Given these building blocks,
the M and ∆ mappings presented in Section 3.2.4 can be optimized. In M , the reverse
mapping for canon_rel(ti) = (t′, li) only needs to map t′ to all ti terms. And ∆ can
become a labeled union-find with label l, so that in addition to storing the right-hand
side once for all equal elements, it also stores it once for all elements that are in relation
with one another, decreasing the number of necessary substitutions.

Detection of Constant Difference Relations

Example 3.5. Using the constant difference abstract relation (Section 3.2.3), the canon_rel
function separates the constant part from the rest after normalization, e.g.:

canon_rel(−y − v − 2) = (−y − v,−2)

In S4 (Example 3.4), it allows storing and substituting only in t = −y − v − 2, while
keeping z = t+ 4 in the labeled union-find ∆.

81

Example 3.5 illustrates how a constant difference relation was detected between the
terms z and t through the constraint z = t + 4. Given Proposition 3.2, the disequality
t ̸= z is also entailed from canon_rel(t) = (−y − v,−2) and canon_rel(z) = (−y −
v, 2) (although the constant difference relation with a non-zero constant is sufficient to
deduce disequality). Similarly, with Proposition 3.1 equalities can be entailed when the
representatives and the labels obtained from canon_rel are the same.

Example 3.6. With the equations from Example 3.4, if t ∈ [0; 10], propagation of inter-
vals on arithmetic operators and equalities cannot propagate any information through e3,
since, for example, propagation from z + 2v to z is imprecise. However, with the labeled
union-find ∆ for constant differences from Example 3.5, z ∈ [4; 14] is directly deduced.

The collaboration between the Shostak theory of linear arithmetic and the constant
difference abstract relation provides a qualitative gain on other domains. The newly
found relational information allows new propagations that were not possible before, as
shown in Example 3.6.

Extension to TVPE

The TVPE (Two-variables per equality) relation handles constraints of the form y = ax+b,
where x and y are variables and a and b are constants. The TVPE relation can be
represented using a labeled union-find in which the nodes are the variables and the edges
are labeled with a pair (a, b) such that an edge from y to x, labeled with (a, b), indicates
that y = ax+ b. In this case:

• The composition function is defined as: (a, b)⊕ (c, d) = (ac, ad+ b)

• The neutral element eL is: (1, 0)

• The inverse function is: (a, b)−1 = (1/a,−b).

Using the TVPE relation instead of constant difference would provide even more bene-
fits, since x = 3u+3v and y = 8u+8v (related by (8/3, 0)) would be factorized, and their
domains would be propagated directly. However, since it does not guarantee that every
label is unique, some care is needed during conflict to propagate the learned constants.

Alternatively, a simpler extension could be used by ensuring that a key and its negation
cannot both be bound in M . That way, when adding {(−2y− v+ 2) 7→ x} to {(2y+ v−
2) 7→ u}, since (2y+ v− 2) 7→ u was already added, the equality u = −x is deduced, and
M is not updated.

The map updating function is implemented as follows:
(* Adds the binding r 7→ l, from the equality r = l, to the mapping

M *)
let update_map M r l =

if r ∈M then merge l M [r] else
if (−r) ∈M then merge (−l) M [r] else

M [r ← l]

This extension combined with the constant difference abstract relation would allow
for more propagations, without the difficulties that come with fully implementing TVPE.
Although, it is clearly not as powerful as TVPE.

82

Chapter 4

n-Indexed Sequences I: Reasoning

The theory of n-indexed sequences [2, 4] is a variant of the theory of sequences. In it, n-
indexed sequences, also called n-sequences, are defined as ordered collections of values of
the same sort, indexed by integers from a first index n to a last index m. Such sequences
are present in some programming languages, such as Ada. There is no dedicated theory
for such sequences and no decision procedure to reason about them. Reasoning over
them cannot be achieved straightforwardly using existing theories, such as the theories
of arrays and sequences, because doing so would require extensions and axiomatizations,
eventually with quantifiers, over these theories.

This chapter explores the topic of n-indexed sequences, proposes an SMT theory
of n-indexed sequences, its signature and semantics, as well as different approaches to
reasoning over it. These reasoning approaches include leveraging existing theories and
adapting calculi designed for the theory of sequences to the theory of n-indexed sequences.

4.1 Syntax and Semantics

SMT-LIB symbol Sort Notation
nseq.first NSeq(E)→ Int f_
nseq.last NSeq(E)→ Int l_
nseq.get NSeq(E)→ Int→ E get(_,_)
nseq.set NSeq(E)→ Int→ E→ NSeq(E) set(_,_,_)
nseq.const Int→ Int→ E→ NSeq(E) const(_,_,_)
nseq.relocate NSeq(E)→ Int→ NSeq(E) relocate(_,_)
nseq.concat NSeq(E)→ NSeq(E)→ NSeq(E) concat(_,_)
nseq.slice NSeq(E)→ Int→ Int→ NSeq(E) slice(_,_,_)
nseq.update NSeq(E)→ NSeq(E)→ NSeq(E) update(_,_)

Table 4.1: The signature of the theory of n-indexed sequences.

This section presents the theory of n-indexed sequences. Its signature is shown in
Table 4.1, along with the notations for the symbols of the theory.

Definition 4.1 (Bounds). The bounds of an n-sequence s are its first and last indices,
respectively denoted as fs and ls, and correspond to the values returned by the functions

83

nseq.first(s) and nseq.last(s). An index i is said to be within the bounds of an n-sequence
s if:

fs ≤ i ≤ ls.

Definition 4.2 (Empty n-sequence). An n-sequence s is said to be empty if ls < fs. Two
empty n-sequences s1 and s2 are equal if fs1 = fs2 and ls1 = ls2. Otherwise, they are
distinct.

The following list describes the semantics of each symbol in the theory:

• fs: the first index of s.

• ls: the last index of s.

• get(s, i): If fs ≤ i ≤ ls, returns the element associated with i in s, otherwise, returns
an uninterpreted value.

• set(s1, i, v): If fs1 ≤ i ≤ ls1 , creates a new n-sequence s2 with the same bounds as
s1, where ∀k. fs1 ≤ k ≤ ls1 =⇒ get(s2, k) = ite(k = i, v, get(s1, k)). Otherwise,
returns s1.

• const(f, l, v): Creates an n-sequence s with fs = f and ls = l, where ∀k. f ≤ k ≤
l =⇒ get(s, k) = v.

• relocate(s1, f): Given an n-sequence s1 and an index f , returns a new n-sequence
s2 with fs2 = f and ls2 = f + ls1 − fs1 , where ∀k. f ≤ k ≤ ls2 =⇒ get(s2, k) =
get(s1, k − fs2 + fs1).

• concat(s1, s2): If s1 is empty, returns s2. If s2 is empty, returns s1. If fs2 = ls1 + 1,
returns a new n-sequence s3 with fs3 = fs1 and ls3 = ls2 , where ∀k. fs1 ≤ k ≤ ls2 =⇒
get(s3, k) = ite(k ≤ ls1 , get(s1, k), get(s2, k)). Otherwise, returns s1.

• slice(s1, f, l): If fs1 ≤ f ≤ l ≤ ls1 , returns a new n-sequence s2 with fs2 = f and
ls2 = l, where ∀k. f ≤ k ≤ l =⇒ get(s2, k) = get(s1, k). Otherwise, returns s1.

• update(s1, s2): If s1 is empty, s2 is empty, or the property fs1 ≤ fs2 ≤ ls2 ≤
ls1 does not hold, returns s1. Otherwise, returns a new n-sequence s3 with the
same bounds as s1, where ∀k. fs1 ≤ k ≤ ls1 =⇒ get(s3, k) = ite(fs2 ≤ k ≤
ls2 , get(s2, k), get(s1, k)).

Definition 4.3 (Extensionality). The theory of n-indexed sequences is extensional, which
means that n-sequences that have the same bounds and contain the same elements are
equal. Therefore, given two n-sequences s1 and s2:

s1 = s2 ≡
fs1 = fs2 ∧ ls1 = ls2 ∧ (∀i. fs1 ≤ i ≤ ls1 → get(s1, i) = get(s2, i))

Different semantics can be chosen for the functions of this theory, particularly for
the slice and update functions. Ait-El-Hara, Bobot, and Bury [3] defined a set of theory
design criteria. In particular, it shows that previously proposed semantics for the update

84

function in the theory of sequences are not symmetric: an overlapping update on the right
behaves differently from one on the left, which does not align with the design criterion
of avoiding surprising users. Instead, a symmetric semantics was proposed: in all cases
of overlapping update, the shared indices are updated. It can similarly be adapted for
the slice function, by ensuring that the resulting slice is always equal to the intersection
between the bounds of the slice and the bounds of the original n-sequence.

However, a different, yet still symmetrical, semantics was chosen. This semantics
consists of not updating the n-sequence whenever the update overlaps its bounds. This
choice is justified by the main use case of n-indexed sequences, which is representing arrays
from the Ada programming language, where arrays can be defined over an arbitrary range
of integers. That is also the reason for the choice of the semantics of the concat and slice
functions.

4.2 Reasoning with existing theories
When trying to reason over a theory that is not standard and that SMT solvers do not
support, it is sometimes possible to encode formulas in this theory using other theories
while maintaining the formulas’ semantics. This is typically done by declaring all the
symbols of the theory (sorts and functions) as uninterpreted symbols and then defining
the theory’s semantics through axioms that specify the interpretation of the symbols. For
functions and predicates, it is sometimes possible to define them directly as interpreted
functions. In fact, this is preferable to using axioms with quantifiers, since handling
quantifiers is known to be challenging in SMT solvers [59].

4.2.1 Encoding n-Indexed Sequences using Sequences and Al-
gebraic Data Types

An alternative way to reason over the theory of n-indexed sequences, that uses existing
theories while relying less on axioms and quantifiers, is to encode the theory of n-indexed
sequences using the theories of sequences and algebraic data types.

Listing 4.1 illustrates part of the encoding of the theory of n-indexed sequences using
the theories of sequences and algebraic data types. The sort of n-sequences is defined as
a product type composed of a pair of two values (lines 1 and 2). The first value can be
accessed with nseq.first, it is an integer that represents the first index of the n-sequence.
The second value can be accessed with nseq.seq, it is a sequence that represents the
elements of the n-sequence. With this representation, an n-indexed sequence is essentially
seen as a relocated or offsetted 0-indexed sequence.

With this defined sort of n-sequences, the last function, which returns the last index
of an n-sequence, is defined as the sum of the first index and the length of the sequence,
minus one (lines 4 and 5). This definition leads to a semantic difference between this
version of the theory of n-indexed sequences and the one described in Section 4.1. The
difference lies in the definition of an empty n-sequence (cf. Definition 4.2). In this
version, empty n-sequences always have a last index equal to their first index minus one,
meaning that all empty n-sequences with the same first index are equal. In contrast, in
the original semantics, an empty n-sequence is defined as one whose last index is less than

85

1 (declare - datatype NSeq (par (T)
2 ((nseq.mk (nseq.first Int) (nseq.seq (Seq T))))))
3

4 (define -fun nseq.last (par (T) ((s (NSeq T))) Int
5 (+ (- (seq.len (nseq.seq s)) 1) (nseq.first s))))
6

7 (define -fun nseq.get (par (T) ((s (NSeq T)) (i Int)) T
8 (seq.nth (nseq.seq s) (- i (nseq.first s)))))
9

10 (define -fun nseq.set (par (T)
11 ((s (NSeq T)) (i Int) (v T)) (NSeq T)
12 (nseq.mk (nseq.first s)
13 (seq. update
14 (nseq.seq s) (- i (nseq.first s)) (seq.unit v)))))

Listing 4.1: The sort of n-indexed sequences defined using the sort of sequences and a
product type, and the definitions of the last, set, and get functions over this sort.

its first index, and the last index can be any value smaller than the first index, therefore,
empty n-sequences can have the same first index but different last indices and therefore
be distinct.

The encoding could be made faithful to the original theory by adding a specific con-
structor in the algebraic data type to represent the last index of the n-sequence, allowing
it to take any value less than the first index in the case of empty n-sequences. However,
this would ultimately hinder the performance of solvers that use this encoding, especially
since the difference in semantics is not problematic. Empty n-sequences typically rep-
resent corner cases or failure scenarios, and the position of their last index is usually
irrelevant for determining satisfiability.

The definitions of the get (lines 7 and 8) and set (lines 10 to 14) functions rely on
the nth and update functions from the theory of sequences. They simply shift the index
by subtracting the n-sequence’s first index to get the right element in the underlying
sequence that contains the n-sequence’s elements.

1 (declare -fun nseq.const (par (T) (Int Int T) (NSeq T)))
2

3 ; "nseq.const"
4 (assert (par (T) (forall ((f Int) (l Int) (v T))
5 (!
6 (let ((s (nseq.const f l v)))
7 (and
8 (= (nseq.first s) f)
9 (= (nseq.last s) l)

10 (forall ((i Int)) (=>
11 (and (<= f i) (<= i l))
12 (= (nseq.get s i) v)))))
13 : pattern ((nseq.const f l v))))))
14

15 (define -fun nseq. relocate

86

16 (par (T) ((s (NSeq T)) (f Int)) (NSeq T)
17 (nseq.mk f (nseq.seq s))))
18

19 (define -fun nseq. concat
20 (par (T) ((s1 (NSeq T)) (s2 (NSeq T))) (NSeq T)
21 (ite (< (nseq.last s1) (nseq.first s1))
22 s2
23 (ite
24 (or
25 (< (nseq.last s2) (nseq.first s2))
26 (not (= (nseq.first s2) (+ (nseq.last s1) 1))))
27 s1
28 (nseq.mk
29 (nseq.first s1)
30 (seq .++ (nseq.seq s1) (nseq.seq s2)))))))
31

32 (define -fun nseq.slice
33 (par (T) ((s (NSeq T)) (f Int) (l Int)) (NSeq T)
34 (ite
35 (and
36 (<= f l)
37 (and (<= (nseq.first s) f) (<= l (nseq.last s))))
38 (nseq.mk f (seq. extract (nseq.seq s) (- f (nseq.first s))

(+ (- l f) 1)))
39 s)))
40

41 (define -fun nseq. update
42 (par (T) ((s1 (NSeq T)) (s2 (NSeq T))) (NSeq T)
43 (ite
44 (and
45 (<= (nseq.first s2) (nseq.last s2))
46 (<= (nseq.first s1) (nseq.first s2))
47 (<= (nseq.last s2) (nseq.last s1)))
48 (nseq.mk (nseq.first s1)
49 (seq. update
50 (nseq.seq s1)
51 (- (nseq.first s2) (nseq.first s1))
52 (nseq.seq s2)))
53 s1)))

Listing 4.2: The declaration and axiomatization of the const function, and the definitions
of the functions relocate, concat, slice, and update from the theory of n-indexed sequences,
when the theory is encoded using the theories of sequences and algebraic data types.

The other symbols of the theory of n-indexed sequences, encoded with the symbols
of the theories of sequences and algebraic data types, are presented in Listing 4.2. While
most symbols are encoded as definitions, there is an exception with the const function,
the semantics of which need to be axiomatized using a quantifier (lines 1 to 13), since
there is no direct counterpart for this function in the theory of sequences.

87

The definition of the relocate function simply creates a new n-sequence tuple in which
the first index is the index that was provided as an argument to the function.

Although this approach makes it possible to reason about n-indexed sequences, it is
not ideal to depend on two different theories to do so, as it implies that the performance
of reasoning about the theory becomes tied to the performance of reasoning over both
underlying theories.

Furthermore, the definitions of the concat (lines 19 to 30), slice (lines 32 to 39),
and update (lines 41 to 53) functions, which rely on their counterparts in the theory
of sequences, are relatively complex due to differences in semantics between the two
theories. This complexity could potentially lead to performance issues in practice, since
such complex definitions are likely to be costly for solvers to handle. The complexity
notably comes from the usage of ite to separate the different cases of the definitions.

4.3 Porting Calculi from the Theory of Sequences to
the Theory of n-Indexed Sequences

Since the theory of n-indexed sequences shares similarities with the theory of sequences,
and many symbols serve the same purpose in both, it is natural, when developing a
calculus dedicated to the theory of n-indexed sequences, to base it on calculi developed
for the theory of sequences.

The reasoning over the theory of n-indexed sequences was based on the calculi de-
veloped by Sheng, Nötzli, Reynolds, Zohar, Dill, Grieskamp, Park, Qadeer, Barrett, and
Tinelli [113] (cf. Section 2.6.2) for the theory of sequences, in which two calculi were
proposed.

The first calculus is called the BASE calculus, which is based on a string theory
calculus [19, 81]. The BASE calculus reduces the functions of the theory of sequences
into concatenations of subsequences, which are split when necessary to give sequences
a normal form as concatenations of subsequences. This calculus effectively reduces the
problem of reasoning over sequences into a problem of word equations [58].

The second calculus is called the EXT calculus. While most operations in EXT are
handled similarly to BASE, it differs in its handling of the functions for selecting and
storing an element at an index, by using array-like reasoning instead of reducing them to
concatenations.

The differences in syntax and semantics between the theory of n-indexed sequences
and the theory of sequences lie in the following symbols:

• const and relocate do not appear in the theory of sequences, while seq.empty, seq.unit,
and seq.len do not appear in the theory of n-indexed sequences.

• The seq.nth function corresponds to the get function in the theory of n-indexed
sequences.

• seq.update from the theory of sequences [113], with an element as the third argu-
ment, corresponds to set in the theory of n-indexed sequences, while seq.update

88

with a sequence as the third argument1, corresponds to update in the theory of
n-indexed sequences, which takes only two n-sequences as arguments.

• seq.extract in the theory of sequences takes a sequence, an offset, and a length, and
corresponds to slice in the theory of n-indexed sequences, which takes an n-sequence,
a first index, and a last index.

• The concatenation function (seq.++) in the theory of sequences is n-ary, while the
concat function in the theory of n-indexed sequences is binary.

Therefore, it was necessary to make substantial changes to the calculi for the theory
of sequences to adapt them to the theory of n-indexed sequences. The versions of the
BASE and EXT calculi that were developed for n-indexed sequences are referred to as
the NS-BASE and NS-EXT calculi, respectively. In this section, the resulting calculi are
presented.

4.3.1 Reasoning over Relocation
Since n-indexed sequences can have as a first index any integer term, having a relocation
function in the signature of the theory is natural as it allows having multiple n-indexed
sequences that contain the same elements, but do not start at the same index.

Definition 4.4 (Equivalence Modulo Relocation). Given two n-sequences s1 and s2, they
are said to be equivalent modulo relocation, denoted by the relation s1 =reloc s2, such that:

s1 =reloc s2 ≡
ls2 = ls1 − fs1 + fs2 ∧ ∀i : Int. fs1 ≤ i ≤ ls1 =⇒ get(s1, i) = get(s2, i− fs1 + fs2)

Two n-sequences are equivalent modulo relocation if they are equal, or if they start at
different indices but contain the same sequence of elements.

Reloc-Bounds
s1 = relocate(s2, i)
i = fs2 ∧ s1 = s2 ||

i ̸= fs2 ∧ fs1 = i ∧ ls1 = i+ ls2 − fs2

∧s1 =reloc s2

Figure 4.1: The inference rule used to introduce the =reloc relation.

The equivalence modulo relocation relation is used to reason over the relocate function.
Figure 4.1 presents the Reloc-Bounds rule, which introduces the =reloc relation. The rule
states that when an n-sequence s2 is relocated to an index i equal to its first index fs2 ,
the resulting n-sequence s1 is equal to s2. Otherwise, when i ̸= fs2 then s1 ̸= s2, the
relation s1 =reloc s2 is created, and the bounds of s1 are computed from those of s2 and
propagated.

1From cvc5’s sequence theory:
https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html

89

https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html

Proposition 4.1. The equivalence modulo relocation relation is an equivalence relation
over n-sequences.

Proof. Proving that =reloc relation is an equivalence relation.

• (a) Reflexivity: Given an n-sequence s, s =reloc s holds since an n-sequence is equal
to itself, therefore equivalent (modulo relocation) to itself by definition.

• (b) Symmetry:
Given two n-sequences s1 and s2, s1 =reloc s2 implies: ls2 = ls1 − fs1 + fs2 (1) and
∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i− fs1 + fs2) (2)
From rearranging (1) we get: ls1 = ls2 − fs2 + fs1 (3)
By subtracting fs1 − fs2 from the terms of the disequality in (2) we get:
∀i : Int, fs2 ≤ i− fs1 + fs2 ≤ ls1 − fs1 + fs2 ⇒ get(s1, i) = get(s2, i− fs1 + fs2) (4)
From (2), we can replace ls1 − fs1 + fs2 with ls2 in (4), to get:
∀i : Int, fs2 ≤ i− fs1 + fs2 ≤ ls2 ⇒ get(s1, i) = get(s2, i− fs1 + fs2) (5)
if we introduce a variable j such that j = i− fs1 + fs2 in (5) we get:
∀j : Int, fs2 ≤ j ≤ ls2 ⇒ get(s1, j − fs2 + fs1) = get(s2, j) (6)
From (3) and (6), we deduce that s2 =reloc s1.

• (c) Transitivity:
Given three n-sequences s1, s2 and s3, s1 =reloc s2 and s2 =reloc s3 imply that:
ls2 = ls1 − fs1 + fs2 (1)
∀i : Int, fs1 ≤ i ≤ ls1 ⇒ get(s1, i) = get(s2, i− fs1 + fs2) (2)
ls3 = ls2 − fs2 + fs3 (3)
∀i : Int, fs2 ≤ i ≤ ls2 ⇒ get(s2, i) = get(s3, i− fs2 + fs3) (4)
By replacing ls2 with ls1 − fs1 + fs2 in (3) we get:
ls3 = ls1 − fs1 + fs3 (5)
From (1) we get:
ls1 = ls2 + fs1 − fs2 (6)
By adding fs1 − fs2 to the terms of the disequality in (4), we get:
∀i : Int, fs1 ≤ i+ fs1 − fs2 ≤ ls2 + fs1 − fs2 ⇒ get(s2, i) = get(s3, i− fs2 + fs3) (7)
From (6), we can replace ls2 + fs1 − fs2 with ls1 in (7) and get:
∀i : Int, fs1 ≤ i+ fs1 − fs2 ≤ ls1 ⇒ get(s2, i) = get(s3, i− fs2 + fs3) (8)
By introduction a variable j, such that i = j−fs1 +fs2 and replacing i with j−fs1 +fs2

in (8) we get:
∀j : Int, fs1 ≤ j ≤ ls1 ⇒ get(s2, j − fs1 + fs2) = get(s3, j − fs1 + fs3) (9)
From (2) we get:
∀j : Int, fs1 ≤ j ≤ ls1 ⇒ get(s1, j) = get(s3, j − fs1 + fs3) (10)
From (5) and (10), we deduce that s1 =reloc s3.

90

From (a), (b) and (c), we deduce that =reloc is a reflexive, symmetric and transitive
relation, it is therefore an equivalence relation.

4.3.2 The common calculus
Definition 4.5 (Internal n-sequence concatenation operator). For simplicity and consis-
tency with the Seq theory calculi, an internal concatenation operator :: is introduced, for
which the following invariant holds:

s = s1 :: s2 =⇒ fs = fs1 ∧ ls = ls2 ∧ fs2 = ls1 + 1.

It differs from concat in that it does not require checking the condition fs2 = ls1 + 1
before concatenation, as this condition is ensured by the invariant.

Definition 4.6 (n-sequence normal form). The internal concatenation operation (Defi-
nition 4.5) is used to normalize n-sequences. An n-sequence s is associated to a normal
form s1[:: . . . :: sm] for m > 1, such that:

• The normal form covers the bounds of the n-sequence s, i.e. fs1 = fs ∧ ls = lsn.

• For each component (or subsequence) si in the normal form, s and si have the same
elements at the same indices within the bounds of si.

Definition 4.7 (Atomic n-indexed sequence). An atomic n-sequence is one that either
does not have a normal form, or has itself as the only component in its normal form.

Assumption 4.1. It is assumed that the following simplification rewrites are applied
whenever possible:

s1 :: s2 → s1 when ls2 < fs2 (1)
s1 :: s2 → s2 when ls1 < fs1 (2)
s1 :: s2 → s1 :: w1 :: . . . :: wn when s2 = w1 :: . . . :: wn (3)
s1 :: s2 → w1 :: . . . :: wn :: s2 when s1 = w1 :: . . . :: wn (4)

Rules (1) and (2) remove empty n-sequences from the normal form. Rules (3) and (4)
ensure that when an n-sequence appears in the normal form of another and has its own
normal form, it is replaced by its normal form.

Proposition 4.2. Assumption 4.1 ensures that when an n-sequence s has a normal form
s1 :: s2 :: · · · :: sn, then the n-sequences s1, . . . , sn are atomic n-sequences.

Proof. The rewrites in Assumption 4.1 ensure that when the normal form of an n-sequence
s is no longer atomic (i.e. is of the form _ :: _), then all the occurrences of s in other
n-sequence normal forms are replaced by its normal form.

Proposition 4.3. Given an n-sequence s that has for a normal form s1 :: s2. Assuming
that s2 is empty and the rule (1) of the rewrites in Assumption 4.1 is applied, then the
equality s = s1 holds.

91

Proof. From Definition 4.6:

• An n-sequence s has the same elements at the same indices as si within the bounds
of si, when si is a component of the normal form s.

• The normal form of an n-sequence covers the n-sequence’s whole bounds.

Then if an n-sequence s, has only one component s1 in its normal form, then s and
s1 have the same bounds and share the same elements at the same indices. Which is the
definition of equality over n-sequences (cf. Definition 4.3), therefore s = s1.

Figure 4.2 illustrates a set of common rules shared between the two calculi NS-BASE
and NS-EXT. The rule Const-Bounds propagates the bounds of constant n-sequences,
which are created using the const function.

The rules NS-Slice, NS-Concat, and NS-Update handle slice, concat, and update by
normalizing the n-sequences involved in these functions. For example, with NS-Update,
when the n-sequence s is within the bounds of the n-sequence s2, three fresh n-sequence
variables k1, k2, and k3 are introduced, such that the normal form of s2 is k1 :: k2 :: k3,
while the normal form of the resulting n-sequence s1 is k1 :: s :: k3, ensuring that s1 is
equal to s2 modified to have the elements of s within the bounds of s.

If an n-sequence s has two normal forms which contain two n-sequence terms y1 and y2
that start at the same index. The NS-Split rule ensures that if y1 and y2 end at the same
index, then they are equal. If they end at different indices, the longer one is propagated as
equal to a concatenation of the shorter one and a fresh n-sequence variable. For example,
if y1 is longer than y2, then the equality y1 = y2 :: k, with k a fresh n-sequence variable,
is propagated.

The NS-Comp-Reloc rule propagates normal forms over the =reloc relation. The NS-
Exten rule is the extensionality rule, which states that any two n-sequences s1 and s2
are either equal or distinct. Two n-sequences are distinct if they have different bounds,
contain distinct components with the same bounds in their normal forms, or differ in at
least one element.

4.3.3 The base calculus
The base calculus comprises the rules in Figures 4.1 to 4.3. The rules R-Get and R-Set
handle the get and set operations by introducing new normal forms for the n-sequences
on which they operate.

In the R-Get rule, when i is within the bounds of s, a new normal form of s is
introduced. This form includes a constant n-sequence of size one at index i, storing the
value v, and two variables, k1 and k2, to represent the left and right segments of the
n-sequence s, respectively.

The R-Set rule operates similarly: when i is within the bounds of s2, new normal
forms are introduced for both s1 and s2. These forms share the variables k1 and k3,
which represent the segments to the left and right of index i. For s1, the normal form
contains a constant n-sequence of size one holding the value v at index i, while s2’s normal
form contains an n-sequence variable k2, also of size one at index i.

92

Const-Bounds
s = const(f, l, v)
fs = f ∧ ls = l

NS-Slice
s1 = slice(s, f, l)

(f < fs ∨ l < f ∨ ls < l) ∧ s1 = s ||
fs ≤ f ≤ l ≤ ls∧

fs1 = f ∧ ls1 = l ∧ s = k1 :: s1 :: k2

NS-Concat
s = concat(s1, s2)

ls1 < fs1 ∧ s = s2 ||
(ls2 < fs2 ∨ ls1 + 1 ̸= fs2) ∧ s = s1 ||

fs1 ≤ ls1 ∧ fs2 ≤ ls2 ∧ fs2 = ls1 + 1 ∧ s = s1 :: s2

NS-Update
s1 = update(s2, s)

(ls < fs ∨ fs < fs2 ∨ ls2 < ls) ∧ s1 = s2 ||
fs2 ≤ fs ≤ ls ≤ ls2 ∧ s1 = k1 :: s :: k3 ∧ s2 = k1 :: k2 :: k3

NS-Split
s = w :: y1 :: z1 s = w :: y2 :: z2

ly1 = ly2 ∧ y1 = y2 ||
ly1 > ly2 ∧ y1 = y2 :: k ∧ fk = ly2 + 1 ∧ lk = ly1 ||
ly1 < ly2 ∧ y2 = y1 :: k ∧ fk = ly1 + 1 ∧ lk = ly2

NS-Comp-Reloc
s1 = k1 :: k2 :: . . . :: kn s1 =reloc s2

fs1 = fs2 ∧ s1 = s2 ||
s2 = relocate(k1, fs2) :: relocate(k2, fk2 − fs1 + fs2) :: . . .

:: relocate(kn, fkn − fs1 + fs2)

NS-Exten
s1 s2

s1 = s2 ||
fs1 ̸= fs2 ∨ ls1 ̸= ls2 ||

s1 = . . . :: k1 :: . . . ∧ s2 = . . . :: k2 :: . . .∧
fk1 = fk2 ∧ lk1 = lk2 ∧ fk1 ≤ lk1 ∧ k1 ̸= k2 ||

fs1 ≤ i ≤ ls2 ∧ get(s1, i) ̸= get(s2, i)

Figure 4.2: Common inference rules for the NS-BASE and NS-EXT calculi.

4.3.4 The extended calculus
The extended calculus (NS-EXT) consists of the rules in Figures 4.1, 4.2, 4.4 and 4.5. It
differs from the base calculus by reasoning over the get and set functions in a manner
inspired by the weakly equivalent arrays decision procedure [37] (cf. Section 2.5.3).

The rules in Figure 4.4 handle interactions between the get and set functions and n-
sequence normal forms. The Get-Concat, Set-Concat, and Set-Concat-Inv rules illustrate
how get and set operations are handled when applied to an n-sequence in normal form,
where the operations affect the right component of the normal form. Get-Concat simply

93

R-Get
v = get(s, i)

i < fs ∨ ls < i ||
fs ≤ i ≤ ls ∧ s = k1 :: const(i, i, v) :: k2

R-Set
s1 = set(s2, i, v)

(i < fs2 ∨ ls2 < i) ∧ s1 = s2 ||
fs1 = fs2 ∧ ls1 = ls2 ∧ fs2 ≤ i ≤ ls2∧

s1 = k1 :: const(i, i, v) :: k3 ∧ s2 = k1 :: k2 :: k3

Figure 4.3: NS-BASE-specific inference rules.

propagates the get(s, i) application to the right n-sequence in the normal form of s by
selecting the one that has i within its bounds. The rules Set-Concat and Set-Concat-
Inv do that as well. Given s1 = set(s2, i, v), Set-Concat creates a modified version of
the normal form of s1 in which wi is replaced by set(wi, i, v), where wi is an n-sequence
that is part of the normal form of s2 and that contains i within its bounds. Meanwhile,
Set-Concat-Inv does the inverse, by creating a modified version of the normal form of s2
in which a fresh n-sequence variable k replaces wi and the equality wi = set(k, i, v) is
propagated.

Figure 4.5 illustrates reasoning rules of the NS-EXT calculus that are inspired by
array reasoning. It focuses on the reasoning over the get and set functions and how they
interact with one another, as well as with =reloc relations and const applications.

The Set-Bounds rule ensures that a set application such as s1 = set(s2, i, v) either
results in s1 = s2 if i is not within the bounds of s2, or else ensures get(s2, i) ̸= v when
s1 differs from s2.

The Get-Intro rule introduces a get application derived from a set application when
the index of the set application is within the bounds of the n-sequence to which it is
applied. The Get-Const rule deals with the case in which get is applied to an n-sequence
where all elements are the same value v, ensuring that when get is applied within the
bounds of that n-sequence, its result is equal to v.

The Get-Over-Set rule, commonly referred to as the read-over-write or select-over-
store rule in decision procedures for the theory of arrays, ensures that a get application
over a set application returns the right value. Lastly, the Get-Reloc rule enables the
propagation of constraints on elements of an n-sequence to other n-sequences that are
equivalent modulo relocation to it.

4.3.5 Soundness Proofs

In this section, the soundness of the inference rules that constitute the NS-BASE and NS-
EXT calculi is proven. A rule is said to be sound if, when applied under its premises, it
produces an equisatisfiable environment to the one before its application. This is verified
by proving that the consequences of the inference rules can in fact be deduced from their
premises and the semantics of the operations involved in the rule.

94

Get-Concat
v = get(s, i) s = w1 :: . . . :: wn

i < fs ∨ ls < i ||
fw1 ≤ i ≤ lw1 ∧ get(w1, i) = v ||

. . . ||
fwn ≤ i ≤ lwn ∧ get(wn, i) = v

Set-Concat
s1 = set(s2, i, v) s2 = w1 :: . . . :: wn

i < fs2 ∨ ls2 < i ||
s1 = set(w1, i, v) :: . . . :: wn ∧ fw1 ≤ i ≤ lw1 ||

. . . ||
s1 = w1 :: . . . :: set(wn, i, v) ∧ fwn ≤ i ≤ lwn

Set-Concat-Inv
s1 = set(s2, i, v) s1 = w1 :: . . . :: wn

i < fs2 ∨ ls2 < i ||
s2 = k :: . . . :: wn ∧ fw1 ≤ i ≤ lw1 ∧ w1 = set(k, i, v) ||

. . . ||
s2 = w1 :: . . . :: k ∧ fwn ≤ i ≤ lwn ∧ wn = set(k, i, v)

Figure 4.4: NS-EXT inference rules for reasoning over interactions between set and get applica-
tions and normal forms.

Set-Bounds
s1 = set(s2, i, v)
s1 = s2 ||

fs1 = fs2 ∧ ls1 = ls2 ∧ fs1 ≤ i ≤ ls1 ∧ get(s2, i) ̸= v

Get-Intro
s1 = set(s2, i, v)

i < fs1 ∨ ls1 < i || fs1 ≤ i ≤ ls1 ∧ v = get(s1, i)

Get-Const
s = const(f, l, v) u = get(s, i)

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ u = v

Get-Over-Set
s1 = set(s2, i, v) u = get(s1, j)

i < fs1 ∨ ls1 < i ∨ j < fs1 ∨ ls1 < j ||
fs1 ≤ i ≤ ls1 ∧ fs1 ≤ j ≤ ls1 ∧ i = j ∧ u = v ||

fs1 ≤ i ≤ ls1 ∧ fs1 ≤ j ≤ ls1 ∧ i ̸= j ∧ u = get(s2, j)

Get-Reloc
v = get(s1, i) s1 =reloc s2

i < fs1 ∨ ls1 < i || fs1 ≤ i ≤ ls1 ∧ v = get(s2, i− fs1 + fs2)

Figure 4.5: NS-EXT inference rules for reasoning over interactions between set and get applica-
tions.

95

Soundness of the introduction rule of the equivalence modulo relocation rela-
tion

Proof. Reloc-Bounds is sound
Given s1 = relocate(s2, i), the rule states:

• if i = fs2 then s1 = s2, which is sound by Definition 4.4 (for defining the bounds)
and Definition 4.3 (for proving equality).

• otherwise it sets the bounds of s1 and adds the relation s1 =reloc s2, which is sound
by Definition 4.4.

Common calculus soundness

This section proves the soundness of the rules in Figure 4.2.

Proof. Const-Bounds is sound
Given s = const(f, l, v), the rule simply sets the bounds for the n-sequence s to f and

l, following the semantics of the const function.

Proof. NS-Slice is sound
Given s1 = slice(s, f, l), the rule states that if f < fs or l < f or ls < l, then

s1 = s. Otherwise, it introduces two fresh n-sequence variables k1 and k2 such that
s = k1 :: s1 :: k2, which amounts to stating that s1 is equal to the section of the n-
sequence s that is within the bounds f and l which are the bounds of s1, which follows
the semantics of the slice function.

Proof. NS-Concat is sound
Given s = concat(s1, s2), the rule states that if s1 is empty then s = s2. If s2 is empty

or fs2 ̸= ls1 + 1, then s = s1. Otherwise, s = s1 :: s2, which corresponds to the semantics
of the concat function.

Proof. NS-Update is sound
Given s1 = update(s2, s), the rule states that if ls < fs or fs < fs2 or ls2 < ls, then

s1 = s2. Otherwise, it introduces three fresh n-sequence variables k1, k2, and k3 such that
s1 = k1 :: s :: k3 and s2 = k1 :: k2 :: k3, stating that s1 shares the same elements with s2
on all indices outside the bounds of s, where s1 has the same elements as s inside those
bounds, while s2 has the n-sequence fresh variable k2. This matches the semantics of the
update function.

Proof. NS-Comp-Reloc is sound
Given s1 = k1 :: k2 :: . . . :: kn and s1 =reloc s2, the rule states that if fs1 = fs2 , then

s1 = s2. Otherwise, it states:

s2 = relocate(k1, fs2) :: relocate(k2, fk2 − fs1 + fs2) :: . . . :: relocate(kn, fkn − fs1 + fs2)

which corresponds to computing a normal form for s2 by relocating that of s1, and is
sound by Definitions 4.4 and 4.6.

96

Proof. NS-Exten is sound
Given two n-sequences s1 and s2, the rule states that they are either equal or unequal,

with inequality presented in three cases:

• the two n-sequences have different bounds.

• their normal forms contain distinct components with the same bounds.

• there exists an index within the bounds of both n-sequences where they hold dif-
ferent elements.

This follows directly from the extensionality property in Definition 4.3.

NS-BASE soundness

This section proves the soundness of the rules in Figure 4.3.

Proof. R-Get is sound
Given v = get(s, i), the rule does nothing if i is outside the bounds of s. Otherwise, it

states that s = k1 :: const(i, i, v) :: k2, with k1 and k2 as fresh n-sequence variables. This
amounts to stating that the element at the ith index in s is equal to v, which corresponds
to the semantics of the get function.

Proof. R-Set is sound
Given s1 = set(s2, i, v), the rule states:

• If i is within the bounds of s2, then fresh n-sequence variables k1, k2, and k3 are
introduced, and s1 = k1 :: const(i, i, v) :: k3 and s2 = k1 :: k2 :: k3 are propagated.
This states that at index i, s1 contains const(i, i, v), while s2 contains k2, and on the
other indices, s1 and s2 share the same elements, represented by k1 and k3. This is
sound by the semantics of the set function and Definition 4.6.

• If i is outside the bounds of s2, then s1 = s2, which is sound by the semantics of
the set function.

NS-EXT soundness

This section proves the soundness of the rules in Figures 4.4 and 4.5.

Proof. Get-Concat is sound
Given v = get(s, i) and s = w1 :: . . . :: wn, the rule does nothing if i is outside the

bounds of s. Otherwise, it states that get(wm, i) = v for some 1 ≤ m ≤ n, where wm is
the component of s’s normal form encompassing the index i. This amounts to applying
the get function to the component of s’s normal form that encompasses index i, which is
sound by the semantics of the get function and Definition 4.6.

97

Proof. Set-Concat is sound
Given s1 = set(s2, i, v) and s2 = w1 :: . . . :: wn, the rule does nothing if i is outside

the bounds of s2. Otherwise, it sets the normal form of s1 to be the same as s2 except for
component wm, where fwm ≤ i ≤ lwm , replacing wm with set(wm, i, v). This amounts to
applying the set function to the component of s2’s normal form that encompasses index
i, which is sound by the semantics of set and Definition 4.6.

Proof. Set-Concat-Inv is sound
Given s1 = set(s2, i, v) and s1 = w1 :: . . . :: wn, the rule does nothing if i is outside

the bounds of s2. Otherwise, it sets the normal form of s2 to be the same as s1 except
for component wm, where fwm ≤ i ≤ lwm , replacing wm with a fresh n-sequence variable
k such that wm = set(k, i, v). This matches the semantics of set and Definition 4.6.

Proof. Set-Bounds is sound
Given s1 = set(s2, i, v), the rule states:

• Either s1 = s2, because i is outside the bounds of s2 or because v = get(s2, i), which
is sound by the semantics of set and get.

• Or i is within the bounds of s2, s1 and s2 have equal bounds, and v ̸= get(s2, i),
which is also sound by the semantics of set and get.

Proof. Get-Intro is sound
Given s1 = set(s2, i, v), the rule states that if i is within the bounds of s2, then

v = get(s1, i). Otherwise, the rule does nothing, which is sound by the semantics of get
and set.

Proof. Get-Const is sound
Given s = const(f, l, v) and u = get(s, i), if i is within the bounds of s, then u = v

since s is a constant n-sequence, otherwise the rule does nothing. This is sound by the
semantics of get and const.

Proof. Get-Over-Set is sound
Given s1 = set(s2, i, v) and u = get(s1, j), if i is outside the bounds of s1, then the

rule does nothing. Otherwise:

• If i = j, then u = v, which is sound by the semantics of get and set.

• If i ̸= j, then u = get(s2, j), which is also sound by the semantics of get and set.

Proof. Get-Reloc is sound
Given v = get(s1, i) and s1 =reloc s2, the rule does nothing if i is not within the

bounds of s1. Otherwise, it states that v = get(s2, i − fs1 + fs2), which is sound by
Definition 4.4.

98

4.4 Reasoning with Shared Slices
The shared slices calculus, denoted as NS-ShS, was developed to reason over the theory of
n-indexed sequences, but it can also be adapted for classical sequences. Contrary to the
calculi presented in Section 4.3, this one is not inspired by string reasoning and therefore
does not rely on word equations to reason over (n-indexed) sequences. Instead, it is based
on the array decision procedure that relies on weak equivalence between arrays introduced
by Christ and Hoenicke [37]. It uses the weak-equivalence graph and extends it with other
relations that arise when reasoning over n-indexed sequences, notably equivalence modulo
relocation and the shared-slice relation.

Definition 4.8 (Shared-Slice Relation). Given two n-sequences a and b, a shared slice
between a and b is a relation denoted as =[f ;l], where f and l are bounds such that f ≤ l,
and both are within the bounds of a and b. The relation a =[f ;l] b states that a and b share
a slice within the bounds f and l, and is defined as follows:

a =[f ;l] b ≡
fa ≤ f ≤ l ≤ la∧
fb ≤ f ≤ l ≤ lb∧

∀i. f ≤ i ≤ l =⇒ get(a, i) = get(b, i)

Proposition 4.4. The shared-slice relation is a family of equivalence relations.

Proof. Given three n-sequences a, b, and c, and any two bounds f and l such that f ≤ l
and the bounds [f ; l] are within the bounds of a, b, and c, the shared-slice relation =[f ;l]
satisfies:

• Reflexivity: a =[f ;l] a, since a has the same elements as itself on all indices, and
thus also within the bounds [f ; l].

• Symmetry: The relation a =[f ;l] b is undirected. It simply states that a and b share
the same elements within the bounds [f ; l]. Therefore, b =[f ;l] a also holds.

• Transitivity: Given a =[f ;l] b and b =[f ;l] c, the two relations respectively state that
a and b share the same elements within the bounds [f ; l], and that b and c share
the same elements within the same bounds. Therefore, a and c also share the same
elements within the bounds [f ; l], which implies a =[f ;l] c.

Since the shared-slice relation is reflexive, symmetric, and transitive for given bounds, it
is therefore a family of equivalence relations.

This section presents the shared slices calculus in two parts. The first part describes
how the relations graph is created. The relations graph manages the relations that
are used by the calculus to reason over n-indexed sequences, notably the shared-slice
and weak-equivalence relations. The second part presents the calculus in the form of
the inference rules that it consists of. These rules do different propagations between
n-indexed sequences and handle the detection of equalities and inequalities.

99

4.4.1 Relations Graph
The relations graph, used in the shared slices calculus, is an extended version of the weak
equivalence graph [37] (cf. Section 2.5.3). In this graph, vertices are n-indexed sequences.

Definition 4.9 (Weak-Equivalence Edge on n-Indexed Sequences). Given two n-indexed
sequences a and b, the existence of a weak equivalence edge labeled with an index k linking
a and b, denoted a k↔ b, represents:

fa = fb ∧ la = lb ∧ ∀i. (fa ≤ i ≤ la ∧ i ̸= k) =⇒ get(a, i) = get(b, i).

This means that for all indices within the bounds of a (and b) that are different from k, a
and b hold the same elements. If a and b are different, they can only differ on the element
they hold at the index k.

Two n-indexed sequences a and b can be linked by a weak-equivalence or shared
slice edge. They can also be in relation with one another through the equivalence modulo
relocation relation described in Definition 4.4. This relation is represented using a labeled
union-find structure following the star topology.

An undirected weak-equivalence edge labeled with the index term i is added between
two n-sequences a and b whenever a term of the form a = set(b, i,_) or b = set(a, i,_) is
created, such that fa ≤ i ≤ la (and fb ≤ i ≤ lb, knowing that fa = fb and la = lb). There
can only be one weak-equivalence edge between two n-sequences a and b.

Proposition 4.5. If two n-sequences a and b are already linked by a weak-equivalence
edge labeled with the index term j, and a term of the form a = set(b, i,_) is created with
fb ≤ i ≤ lb, then, knowing that fa = fb and la = lb, it follows that either i = j or a = b.

Proof. Given two n-sequences a and b such that an edge a j↔ b exists, if a second edge
a

i↔ b is introduced:

• If i = j then the edge a j↔ b is kept and nothing changes.

• If i ̸= j, then a = b:
From the definition of weak-equivalence edges (Definition 4.9):

(a) The existence of a j↔ b means that a and b have the same elements in all
indices except possibly in j.

(b) Adding a
i↔ b means that a and b have the same elements in all indices,

including j, except possibly in i.

From (a) the equality get(a, i) = get(b, i) can be deduced, combined with the edge
a

i↔ b, it leads to deducing a = b (and symmetrically from (b) with a
j↔ b).

The construction of the relations graph is done through the rules in Figure 4.6. The
rule Set-Bounds-WEq introduces weak-equivalence relations from applications of the set
function. Shared slices are introduced from applications of the functions concat, slice,
and update, through the rules Concat-ShS-Intro, Slice-ShS-Intro, and Update-ShS-Intro,
respectively. The equivalence modulo relocation relation is introduced via the same Reloc-
Bounds rule shown in Figure 4.1.

100

Set-Bounds-WEq
s1 = set(s2, i, v)
s1 = s2 ||

fs1 ≤ i ≤ ls1 ∧ fs1 = fs2 ∧ ls1 = ls2 ∧ get(s1, i) = v ∧ s1
i↔ s2

Concat-ShS-Intro
a = concat(b, c)

fb > lb ∧ a = c ||
fc > lc ∧ a = b ||

lb + 1 ̸= fc ∧ a = b ||
fb ≤ lb ∧ fc ≤ lc ∧ lb + 1 = fc ∧ a =[fb;lb] b ∧ a =[fc;lc] c

Slice-ShS-Intro
a = slice(b, f, l)

(fb > lb ∨ f > l ∨ fb > f ∨ l > lb) ∧ a = b ||
fb ≤ f ≤ l ≤ lb ∧ fa = f ∧ la = l ∧ a =[f ;l] b

Update-ShS-Intro
a = update(b, c)

(fc < fb ∨ lb < lc ∨ fc > lc) ∧ a = b ||
fb = fc ∧ lc = lb ∧ a = c ||

fa = fb ∧ la = lb ∧ fb ≤ fc ≤ lc ≤ lb∧
a =[fb;fc−1] b ∧ a =[fc;lc] c ∧ a =[lc+1;lb] b

Figure 4.6: Rules that introduce the shared-slice and weak-equivalence relations.

4.4.2 Calculus

The shared slices calculus works by building the relations graph via the rules in Figures 4.1
and 4.6 for the introduction of the weak-equivalence, shared slice, and equivalence modulo
relocation relations.

In addition to the graph construction rules, the shared slices reasoning relies on the
rules in Figure 4.7, as well as the rule Const-Bounds in Figure 4.2 and the rules Get-Const
and Get-Reloc in Figure 4.5.

Figure 4.7 presents rules that are specific to the shared slices calculus. In this calculus,
element constraints are propagated over weak-equivalence relations with the rule Get-
Over-WEq, which allows propagating an element constraint over a weak-equivalence edge
when possible. The Get-Over-ShS rule describes how constraints on n-sequence elements
are propagated over shared slices. The rule Match-ShS states that if two n-sequences b
and c have a shared slice, eventually transitively through an intermediary n-sequence a,
and this slice covers their whole bounds, then it follows that b = c.

Finally, the extensionality rule Shs-Ext states that for any two n-sequences a and
b, these n-sequences are equal if they have the same bounds and the same elements.
Otherwise, they are distinct. In the case of inequality, the index term k is a fresh index
variable within the bounds of a and b, chosen such that get(a, k) and get(b, k) differ and
no shared slice exists covering k.

101

Get-Over-WEq
get(a, i) = v a

k↔ b

i < fa ∨ i > la ||
i = k ||

fa ≤ i ≤ la ∧ i ̸= k ∧ get(b, i) = v

Get-Over-ShS
v = get(a, i) a =[f ;l] b

i < f ∨ i > l ||
f ≤ i ≤ l ∧ get(b, i) = v

Match-ShS
a =[fb;lb] b a =[fc;lc] c

fb ̸= fc ∨ lb ̸= lc ||
fb = fc ∧ lb = lc ∧ b = c

Shs-Ext a b
(fa ̸= fb ∨ la ̸= lb) ∧ a ̸= b ||
fa = fb ∧ la = lb ∧ a = b ||

fa = fb ∧ la = lb ∧ fa ≤ k ≤ la ∧ a ̸= b∧
get(a, k) ̸= get(b, k)∧

∀f, l. a =[f ;l] b =⇒ k < f ∨ k > l

Figure 4.7: Rules from the shared slices calculus that handle the propagation of element con-
straints over shared slice and weak-equivalence relations, as well as the interactions of shared
slices with one another, in addition to an adapted version of the extensionality rule for shared
slices.

102

Discussion

While not yet implemented, further simplifications based on interactions between rela-
tions can be envisioned. For example, given two n-sequences a and b that share two shared
slices: a =[f1;l1] b and a =[f2;l2] b. Instead of keeping these two as separate relations, they
can be combined into a single union-of-slices relation:

a =[f1;l1]∪[f2;l2] b.

This allows simplifications such as merging adjacent or overlapping intervals. For in-
stance, if f1 ≤ f2 ≤ l1 ≤ l2, then the union can be simplified to a =[f1;l2] b.

Another potential simplification involves the interaction between shared slices and
weak-equivalence edges. If a weak-equivalence edge exists between two n-sequences a
and b: a k↔ b, and a shared slice edge a =[f ;l] b also exists such that f ≤ k ≤ l, then a
and b can be merged. Indeed, k being within the shared slice [f ; l] implies that a and b
hold the same value at index k. Given that weak-equivalence edges indicate that a and
b can differ only at k, it follows that they are therefore equal.

4.4.3 Soundness Proofs
Similarly to Section 4.3.5, this section proves the soundness of the inference rules used
by the shared slices calculus.

Soundness Proofs for the Shared Slice and Weak-Equivalence Relation Intro-
duction Rules

Proof. Set-Bounds-WEq is sound
Given s1 = set(s2, i, v), the rule states that:
• If i is not within the bounds of s2, then s1 = s2.

• Otherwise, the bounds of s1 and s2 are equal and a weak-equivalence edge is intro-
duced, s1

i↔ s2, which states that for all indices except possibly i, the n-sequences
s1 and s2 have the same elements.

This is sound, as it corresponds to the semantics of the set function and the definition
of weak equivalence in Definition 4.9.

Proof. Concat-ShS-Intro is sound
Given a = concat(b, c), the rule reproduces the semantics of concat:
• If fb > lb, then a = c.

• If fc > lc, then a = b.

• If lb + 1 ̸= fc, then a = b.

• Otherwise, if b and c are both non-empty and lb + 1 = fc, then two shared slice
relations are introduced:

a =[fb;lb] b ∧ a =[fc;lc] c,

stating that a has the same elements as b within the bounds of b, and the same
elements as c within the bounds of c.

103

This is sound with respect to the semantics of concat.

Proof. Slice-ShS-Intro is sound
Given a = slice(b, f, l), the rule states that if fb ≤ f ≤ l ≤ lb, then a shared slice

relation is introduced:
a =[f ;l] b

meaning that a has the same elements as b within the bounds [f ; l]. Otherwise, a = b.
This is sound with respect to the semantics of slice.

Proof. Update-ShS-Intro is sound
Given a = update(b, c), the rule states that if c is empty or its bounds are not contained

within the bounds of b, then a = b. Otherwise:

• If c’s bounds are equal to the bounds of b, then a = c.

• Otherwise, three shared slices are introduced:

– a =[fc;lc] c, stating that a has the same elements as c within the bounds of c.
– a =[fb;fc−1] b and a =[lc+1;lb] b, stating that a has the same elements as b within

its bounds, except inside the bounds of c.

This is sound by the semantics of update.

Soundness Proofs for the Shared Slice Reasoning Rules

Proof. Get-Over-WEq is sound
Given v = get(a, i) and a

k↔ b, the rule states that if i is within the bounds of a and
i ̸= k, then get(b, i) = v. This is sound by the semantics of weak equivalence, as defined
in Definition 4.9, since a k↔ b means a and b hold the same elements in all indices except
possibly k.

Proof. Get-Over-ShS is sound
Given v = get(a, i) and a =[f ;l] b, the rule states that if i is within the bounds of a

and within the bounds [f ; l], then get(b, i) = v. This is sound by the semantics of shared
slices (cf. Definition 4.8).

Proof. Match-ShS is sound
Given a =[fb;lb] b and a =[fc;lc] c, the rule states that if fb = fc and lb = lc, i.e. b and c

have, possibly transitively, a shared slice covering their entire bounds, then b = c. This
follows from the definition of equality over n-sequences in Definition 4.3 and is sound by
the semantics of shared slices.

Proof. Shs-Ext is sound
Given any two n-sequences a and b, the rule states that either:

• They have different bounds, therefore a ̸= b.

• They have the same bounds and are equal.

• They have the same bounds, but there exists an index k such that:

104

– k is within the bounds of a (and b since the bounds of a and b are equal),
– k is not within the bounds of any shared slice between a and b,
– and get(a, k) ̸= get(b, k).

This rule essentially adapts the extensionality rule to take into account shared slices
and is therefore sound with respect to the semantics of shared slices (in Definition 4.8)
and the definition of equality over n-sequences (in Definition 4.3).

105

106

Chapter 5

n-Indexed Sequences II:
Implementation and Evaluation

This chapter is composed of two sections. The first presents and discusses the imple-
mentations of the calculi that were developed for the theory of n-indexed sequences as
described in Chapter 4. The second section focuses on the experimental evaluation of
these calculi. It explains how benchmarks were produced and selected, and how the imple-
mentations were compared with those for the theory of sequences in other state-of-the-art
SMT solvers such as cvc5 and Z3.

5.1 Implementation
To evaluate the performance of the calculi described in Chapter 4, they were implemented
in Colibri2. This section discusses various implementation choices as well as how the CP
features of Colibri2 were used to implement the inference rules that constitute the calculi
presented in Chapter 4. This section also describes several heuristics that are used to
improve the performance of the reasoning.

5.1.1 n-Indexed sequence Normal Forms
The n-sequence normal forms (defined in Definition 4.6) are implemented as a domain in
Colibri2.

Definition 5.1 (The model of an n-indexed sequence). Given an n-sequence s, its model
is defined as:

{i ∈ Z | fs ≤ i ≤ ls} → A

which is a map from indices within its bounds to the values of the elements at those
indices.

The domain of normal forms is denoted as DNF , and it is defined as follows:

• RNF : A map of indices to another map of indices to atomic n-sequences of sort
Node.t→ (Node.t→ Node.t), denoted as:

{ fi 7→ { li 7→ ni} },

107

where each triplet (fi, li, ni) represents an atomic n-sequence ni that is a component
of the normal form and has for bounds fi and li.
Since these triplets correspond to n-sequences that appear in normal forms (each
with a first and last bound), therefore it is not possible to have a binding {f → ∅}
in RNF .

• PA : (r : RNF)→ 2A

During model generation, after all decisions have been made, r is necessarily nor-
malized thanks to the NS-Split rule such that no further splitting can be done on
atomic n-sequences.
Its semantics are defined as:

PA(r) =
⋃
i

sA
i ,

where (_,_, si) ∈ r, sA
i denotes the value of the atomic n-sequence si under the

model A, and the union ⋃
i s

A
i is the sequence obtained by concatenating the sA

i

n-sequences in ascending order of their first indices.

• equal : (r1 : RNF)→ (r2 : RNF)→ Bool
Checks whether:

∀(fi, li, ni) ∈ r1, ∃(fj, lj, nj) ∈ r2. fi = fj ∧ li = lj ∧ ni = nj,

and conversely for all triplets in r2 with respect to r1.

• inter : (r1 : RNF)→ (r2 : RNF)→ RNF option
From the definition of normal forms (Definition 4.6) and given that inter is called
during the merge of two nodes whose bounds have already been merged, the smallest
and biggest bounds used as keys in r1 and r2 are the same.
The reconciliation of normal forms represented by r1 and r2 is done by applying the
NS-Split rule. Since splits are not applied right away, a decision is simply registered
for the splitting of the normal forms, and the returned domain by inter will be in an
intermediary state until the decision is actually applied and the real post-splitting
normal form is set.
Concretely, the contents of r2 are simply added to r1. For any tuple (f, l, n) ∈ r2:

– If f ∈ r1 and l ∈ r1[f], then n = r1[f][l].
– If f ∈ r1 but l /∈ r1[f], then there exists some (f, l′, n′) ∈ r1 with l ̸= l′.

Decisions and splits from NS-Split are then registered:
∗ If l = l′, then n = n′.
∗ If l < l′, then the normal form of n′ is set to n :: k, with k a fresh
n-sequence variable.

∗ If l > l′, then the normal form of n is set to n′ :: k, with k a fresh
n-sequence variable.

Combined with the simplification rewrites in Section 5.1.2. When the decisions
from the NS-Split rule are applied and an n-sequence component is eventu-
ally replaced by its normal form, new decisions can be introduced and that
continues until a flat normal form is found.

108

Example 5.1. Given the n-sequence terms s1, s2, a, b, c and d:

• s1 has the normal form a :: b, represented by the domain r1:

r1 = {1 7→ {5 7→ a}, 6 7→ {10 7→ b}}.

• s2 has the normal form c :: d, represented by the domain r2:

r2 = {1 7→ {i 7→ c}, (i+ 1) 7→ {10 7→ d}}.

where 1 ≤ i ≤ 10.
When merging s1 and s2, a new normal form domain is created:

r = {1 7→ {5 7→ a, i 7→ c}, 6 7→ {10 7→ b}, (i+ 1) 7→ {10 7→ d}}.

And a decision is registered on the relationship between 5 and i.
If the decision i < 5 is made, then a = c :: e is propagated, where e is a fresh variable

that has the bounds [i+ 1, 5]. The normal form domain r is updated to:

r = {1 7→ {i 7→ c}, (i+ 1) 7→ {5 7→ e, 10 7→ d}, 6 7→ {10 7→ b}}.

The rule NS-Split is then applied to the binding: {i+1 7→ {5 7→ e, 10 7→ d}}, resulting
in d = e :: f , where the bounds of f are [6, 10].

The final normal form domain r becomes:

r = {1 7→ {i 7→ c}, (i+ 1) 7→ {5 7→ e}, 6 7→ {10 7→ b}}.

A propagation f = b is also made during substitution (cf. Section 5.1.2), since f has
the same bounds as b.

5.1.2 Simplification rewrites
To ensure that Assumption 4.1 is maintained, Colibri2’s daemon system is used. For
Assumption 4.1, daemons are defined on the following events for a given n-sequence s:

• s is deduced to be empty (i.e. ls < fs is determined to be true): all occurrences of
s in the normal forms of other n-sequences are removed.

• s is determined no longer to be an atomic n-sequence (i.e. s its normal form domain
is set to something like r = _ :: _): all occurrences of s in the normal forms of
other n-sequences are replaced by the normal form r.

Whenever a simplification is applied to a given n-sequence s, it is also applied to all
n-sequences that belong to the same =reloc class as s. For example, if an n-sequence s
is determined to be empty, it is removed from all normal forms of other n-sequences in
which it occurs. Similarly, all elements of the same =reloc class as s are removed from
any normal forms where they appear. This ensures that Assumption 4.1 is consistently
upheld.

109

5.1.3 Equivalence modulo relocation
As described in Section 4.3.1, the =reloc relation links pairs of n-sequences that contain
the same sequence of elements but have different starting indices. The =reloc relation
is an equivalence relation, as shown in Proposition 4.1. All n-sequence terms that are
equivalent modulo relocation (possibly transitively) are said to belong to the same =reloc

class.
Equivalence modulo relocation is necessary for propagating constraints between n-

indexed sequences that are equivalent modulo relocation. These include constraints
over the bounds of n-indexed sequences, equality propagations with the Reloc-Bounds
rule, and maintaining the invariants of the equivalence modulo relocation relation on n-
sequence normal forms with the NS-Comp-Reloc rule in Figure 4.2. It is also required for
propagating constraints on n-sequence elements with the Get-Reloc rule in Figure 4.5.

To perform these various propagations and deductions efficiently, it is necessary to be
able to easily retrieve the =reloc class of any given n-sequence.

This section presents three different ways to represent the =reloc relation to be able
to reason over it and with it

Undirected Graph

A straightforward way to represent the =reloc relation is to use an undirected graph in
which the vertices represent n-sequences. An edge between two vertices indicates that
the n-sequences are equivalent modulo relocation. The graph is undirected because the
=reloc relation is an equivalence relation (cf. Proposition 4.1).

In this approach, constraint propagation can be performed via graph exploration
algorithms such as Breadth-First Search (BFS) to find all elements of the =reloc class of
a given n-sequence. Alternatively, an auxiliary data structure that explicitly maps each
n-sequence to all the other members of its =reloc class can be used.

However, both of these approaches can be costly:

• Graph exploration can be computationally expensive in time complexity, especially
for large graphs, when used frequently.

• Maintaining auxiliary data structures mapping each n-sequence to its equivalence
class can have a significant memory cost and time most when it is updated and
maintained.

In addition, other features such as equality detection between two n-sequences at the
same distance from another n-sequence are not straightforward in the graph approach.
Such actions may require either additional auxiliary data structures or repeated graph
traversals.

Union-Find

Another approach is to use the union-find data structure (cf. Section 3.2.1). The union-
find structure efficiently joins objects related by an equivalence relation into sets, each set
having a single representative element. When a relation is created between two elements
from different sets, the sets are merged.

110

For equivalence modulo relocation, the elements of the union-find data structure are
n-indexed sequences, and the equivalence relation is the =reloc relation. Union-find sets
are represented as rooted trees in which the representative element is at the root, and
non-representative elements are internal nodes or leaves.

The union-find data structure is better than an undirected graph as it does not require
a full exploration of the tree to determine whether two n-sequences are at the same index.
Instead, a traversal from each n-sequence to its representative, computing the cumulative
distance difference along the way is sufficient. If the difference in distance between the two
paths is equal, the n-sequences are equal. Furthermore, if the distance of a n-sequence
relative to the representative is zero, then that n-sequence equals the representative.

However, this approach is still suboptimal: computing paths to the representative
can still be costly. Ideally, this information should be readily available without traversal,
since it can known at the creation of each =reloc relation.

Labeled Union-Find

A more suitable approach uses the labeled union-find data structure (cf. Section 3.2.2).
For the equivalence modulo relocation relation, the set of nodes N in the labeled

union-find corresponds to n-sequence terms, while the set of labels L corresponds to
integer polynomials that represent the differences in starting indices between n-sequence
terms. Integer polynomials with addition satisfy the group axioms:

• Composition is integer addition: comp(x, y) = x+ y.

• The neutral element is 0: ∀x. x+ 0 = 0 + x = x.

• The inverse function is negation: inv(x) = −x.

The used variation of the labeled union-find is the one that follows the star topology,
meaning that all paths are compressed so that non-representative terms in a =reloc class
all have a direct edge to the representative. This topology is chosen because it simplifies
equality detection.

Example 5.2. Consider the following formulas:

• F1: s1 = relocate(s, k1)

• F2: s2 = relocate(s, k2)

• F3: s3 = relocate(s2, k3)

• F4: v1 ̸= v2

• F5: get(s1, k1) = v1

• F6: fs2 = fs3

• F7: get(s2, k2) = v2

Suppose that:

111

• s, s1, s2, and s3 do not initially belong to any =reloc class.

• fs ̸= k1 ̸= k2 and fs ̸= k1 ̸= k3.

• s is chosen as the representative of the newly created class.

Applying the Reloc-Bounds rule to the formulas yields:

• F1: An edge labeled fs − fs1 is added from s1 to s.

• F2: An edge labeled fs − fs2 is added from s2 to s.

• F3: Since the distance difference between s3 and s2 is fs2 − fs3, and the label on the
edge from s2 to s is fs − fs2, an edge labeled fs − fs3 is added from s3 to s.

• F4: The constraint v1 ̸= v2 is propagated.

• F5: The constraint get(s1, k1) = v1 is propagated over the =reloc class, creating
get(s2, k2) = v1, get(s3, k3) = v1, and get(s, fs) = v1.

• F6: The equality fs2 = fs3 implies s2 = s3 after updating the constant difference
relation.

• F7: The constraint get(s2, k2) = v2 is propagated. Since F5 has already created
get(s2, k2) = v1, a contradiction is raised, making the problem unsatisfiable.

Example 5.2 illustrates a general principle: using the labeled union-find in star topol-
ogy for the equivalence modulo relocation relation ensures that every non-representative
n-sequence si in a =reloc class with r as the representative has a direct edge to r labeled
with fr − fsi

.
Concretely, the implementation works as follows: Each n-sequence is either a repre-

sentative or a non-representative of a =reloc class. Each representative r is associated
with a map:

{k1 7→ s1, . . . , kn 7→ sn}
where s1, . . . , sn are non-representative n-sequences in the =reloc class of r, and k1, . . . , kn

are the labels on the edges from s1, . . . , sn to r, respectively. Each non-representative si

is associated with a pair (r, ki), where r is the representative of its =reloc class, and ki is
the label on the edge from si to r.

Initially, the representative of a =reloc class is chosen arbitrarily and remains un-
changed unless a relation joins an element of one class with an element from another
class. In that case, the representative of the larger class (the one containing more ele-
ments) is chosen to become the representative of the merged class.

In addition to path compression, edge labels are kept normalized. This is possi-
ble because Colibri2 associates a normalized polynomial to each arithmetic term (cf.
Section 3.1.1). This normalization simplifies equality detection. For example, given a
representative r associated with a map {k1 7→ s1, k2 7→ s2}. If a new non-representative
s3 is added with label k3, and the equality k1 = k3 is propagated, then s1 = s3 can be
deduced directly. Moreover, for each representative r, the binding {0 7→ r} is added to
its map of non-representatives, ensuring that if a new term s0 is added with label 0, the
equality s0 = r can be deduced immediately.

112

Labeled Union-Find with Map Factorization

In the equivalence modulo relocation relation represented as a labeled union-find, the
labels L are arithmetic terms represented as linear polynomials which, with arithmetic
addition, satisfy the group axioms. Therefore, L forms a group.

Two group actions can be defined over this group:

• Ae: A group action of L on the element constraints (get operations) of an n-
sequence, defined as maps from indices to n-sequence elements, i.e. V : Int→ E.

• ANF : A group action of L on the normal form of an n-sequence.

These group actions can be used to factorize constraints on n-sequence terms.
The first group action Ae : L× V → V is defined over any set of element constraints

m = {k1 7→ v1, . . . , kn 7→ vn} and a difference polynomial δ as:

Ae(δ,m) = {(k1 + δ) 7→ v1, . . . , (kn + δ) 7→ vn}

It has 0 as the neutral element and satisfies associativity for any difference polynomials
δ1 and δ2:

Ae(δ1 + δ2,m) = {(k1 + δ1 + δ2) 7→ v1, . . . , (kn + δ1 + δ2) 7→ vn}
Ae(δ1,Ae(δ2,m)) = {(k1 + δ1 + δ2) 7→ v1, . . . , (kn + δ1 + δ2) 7→ vn}

Ae allows propagating element constraints from any non-representative n-sequence in
a =reloc class to its representative.

Similarly, the second group action ANF : L×NF → NF is defined over any normal
form n = n1 :: . . . :: nm and difference polynomial δ as:

ANF (δ, n) = relocate(n1, fn1 + δ) :: . . . :: relocate(nm, fnm + δ)

This action also has 0 as the neutral element and satisfies associativity:

ANF (δ1 + δ2, n) = relocate(n1, fn1 + δ1 + δ2) :: . . .
:: relocate(nm, fnm + δ1 + δ2)

ANF (δ1,ANF (δ2, n)) = Ae(δ1, relocate(n1, fn1 + δ2) :: . . .
:: relocate(nn, fnn + δ2))

= relocate(n1, fn1 + δ1 + δ2) :: . . .
:: relocate(nm, fnm + δ1 + δ2)

The group actions Ae and ANF allow:

• restricting element constraint propagation to be done only from non-representative
n-sequences to their representatives.

• storing normal forms only on representative n-sequence terms.

This factorization essentially replaces the rules NS-Comp-Reloc and Get-Reloc with
their restricted variants NS-Comp-Reloc-Res and Get-Reloc-Res, as presented in Fig-
ure 5.1. The application of these rules is constrained by ensuring that r in NS-Comp-
Reloc-Res and Get-Reloc-Res is always the representative of its =reloc class.

113

Get-Reloc-Res
v = get(s, i) s =reloc r

i < fs ∨ ls < i || fs ≤ i ≤ ls ∧ v = get(r, i− fs + fr)

NS-Comp-Reloc-Res
s = k1 :: k2 :: . . . :: kn s =reloc r

fs = fr ∧ s = r ||
r = relocate(k1, fr) :: relocate(k2, fk2 − fs + fr) :: . . .

:: relocate(kn, fkn − fs + fr)

Figure 5.1: Inference rules used to factorize constraints and normal forms on n-sequence terms.

5.1.4 Reasoning

Most of the inference rules of the reasoning are applied as soon as possible. When applying
a rule, it is necessary first to determine whether a decision needs to be made to know
which of the inference rule’s consequences should be applied. For instance, when the
term s1 = relocate(s2, i) is encountered, if it is already known that i = fs2 , then s1 = s2
is propagated immediately. Otherwise, a decision is registered on whether i = fs2 is true
to determine which of the rule’s consequences should be propagated.

This applies to the rules Reloc-Bounds, Const-Bounds, NS-Slice, NS-Concat, NS-
Update, NS-Split, and NS-Comp-Reloc in Figures 4.1 and 4.2, as well as all rules in
Figures 4.3 to 4.5. It also applies to the rules NS-Comp-Reloc-Res and Get-Reloc-Res in
Figure 5.1 when they are used.

The rules Get-Concat, Set-Concat, and Set-Concat-Inv are notably re-executed when-
ever the normal form of an n-sequence is updated.

In contrast, the NS-Exten rule is applied only during the last-effort phase. This means
that it is applied to all pairs of n-sequences that are not known to be equal, but only
after all other rules, their propagations, and decisions have been executed. When the NS-
Exten rule is applied, it may introduce new propagations and decisions, which in turn
may introduce additional ones. In such cases, the NS-Exten rule is reapplied only after
all new propagations and decisions are completed. If no new propagations or decisions
are introduced, the NS-Exten rule is not reapplied.

The weak-equivalence graph (cf. Figure 2.16) is also used when reasoning over n-
sequences. In this version, an edge labeled with the index i between two n-sequences a
and b is added whenever a term of the form a = set(b, i, v) or b = set(a, i, v) is encountered.
This graph is exploited during equality checking between two n-sequences a and b. Instead
of simply applying NS-Exten to a and b, the weak-equivalence graph is explored if a and
b are linked, to find the shortest simple paths between them. If there exists a path P
between a and b such that for every index i ∈ P , it holds that get(a, i) = get(b, i), then
a = b can be deduced.

Conversely, when searching for a difference witness index k, i.e. an index k satisfying
get(a, k) ̸= get(b, k), the selected index k is constrained to lie within P . If k /∈ P , then
the propagation of the element at index k can still be made, therefore a and b cannot
differ at index k, leading to a contradiction.

When the rule is applied and there are indices i for which it is not known whether

114

get(a, i) = get(b, i) is true, a decision is registered.
In practice, the NS-Exten rule is applied in the last-effort phase as two last-effort

propagations (a) and (b):

(a) Applies the NS-Exten rule only to pairs of n-sequences known to be distinct. After
a run of this propagation, if it schedules propagations or registers decisions, it
schedules itself again. Otherwise, it schedules propagation (b).

(b) Applies the NS-Exten rule to pairs of n-sequences not yet known to be distinct. If
this propagation schedules any further propagations or registers decisions, it then
schedules (a), as new disequalities or propagations may help propagation (a) detect
contradictions.

This ordering of the propagations (a) and (b) prioritizes applying the NS-Exten rule
on pairs of distinct n-sequences as a heuristic, since deducing equality between terms
already believed to be distinct is likely to lead to contradictions.

5.1.5 Support for the Theory of Sequences
To ensure compatibility with the theory of sequences of cvc5 and Z3, support for a subset
of their versions of the theory of sequences is added. This subset consists of the common
sequence operations that are used to represent array-like data structures in programming
languages. These operations include: seq.unit, seq.len, seq.nth, seq.update (in cvc5 only),
seq.extract, and seq.++.

To support these operations in Colibri2, they are translated internally into operations
from the theory of n-indexed sequences as follows:

• Sequence terms: n-sequence terms where the first index is 0 and the last index is
≥ −1.

• seq.empty: Represented by a special constant term nseq.empty, a constant empty
n-sequence with first index 0 and last index −1.

• seq.unit(v): Translated to const(0, 0, v).

• seq.len(s): Translated to ls − fs + 1.

• seq.nth(s, i): Translated to get(s, i).

• seq.update(s, i, seq.unit(v)): Translated to set(s, i, v).

• seq.update(s1, i, s2):

let
(
r, relocate(s2, i), ite(fs1 ≤ i ≤ ls1 ∧ ls1 < lr,
update(s1, slice(r, i, ls1)), update(s1, r))

)
• seq.extract(s, i, j):

ite(i < fs ∨ ls < i ∨ j ≤ 0, ϵ, relocate(slice(s, i,min(ls, i+ j − 1)), 0))

115

• seq.++(s1, s2, s3, . . . , sn):

let
(
c1, concat(s1, relocate(s2, ls1 + 1)),

let(c2, concat(c1, relocate(s3, lc1 + 1)),
. . .

concat(cn−2, relocate(sn, lcn−2 + 1))))
)

5.1.6 Reasoning with Shared Slices
The shared-slices calculus relies heavily on daemons that wait on the creation of new
relations to do the propagations from the Get-Over-WEq and Get-Over-ShS rules. Given
two n-sequences a and b:

• If a weak-equivalence edge labeled with the index k is created a k↔ b: every element
constraint on a of the form get(a, i) = v1, where i ̸= k, is propagated into b by
creating get(b, i) = v1. The same propagation occurs in the opposite direction,
from b to a.

• If a shared-slice relation labeled with bounds f and l is created a =[f ;l] b: every
element constraint on a of the form get(a, i) = v1, with f ≤ i ≤ l, is propagated
into b by creating get(b, i) = v1. The same propagation is performed from b to a.

• When an element constraint of the form get(a, i) = v appears:

– For every weak-equivalence edge a k↔ c linking a to any n-sequence c with any
label k, the propagation get(c, i) = v is made if i ̸= k.

– For every shared-slice relation a =[f ;l] c linking a to any n-sequence c over any
bounds [f ; l], the propagation get(c, i) = v is made if f ≤ i ≤ l.

For the Match-ShS rule, when a shared-slice relation links the two n-sequences b and
c, the condition f = fb ∧ f = fc ∧ l = lb ∧ l = lc is waited upon, if this condition becomes
true, then the equality b = c is propagated.

The Shs-Ext rule follows the same heuristics as NS-Exten described in Section 5.1.4,
with the only addition being the check of belonging a shared slice.

5.2 Experimental Evaluation
This section presents experimental results of the implementations described in Section 5.1,
of the calculi described in Section 4.3. These experiments were conducted on quantifier-
free benchmarks that use only the theories of sequences and n-indexed sequences with
the theory of uninterpreted functions.

The benchmarks are a subset of those used by Sheng, Nötzli, Reynolds, Zohar, Dill,
Grieskamp, Park, Qadeer, Barrett, and Tinelli [113], which were originally translated
into the theory of sequences from the QF_AX SMT-LIB benchmarks [16]. Additionally,
the QF_AX benchmarks were translated into the theory of n-indexed sequences to test
the native calculi from Section 4.3, and compare them with the encoding of the theory of

116

n-indexed sequences using the theories of sequences and algebraic data types as described
in Section 4.2.1.

Implementations in Colibri21 of the NS-BASE, NS-EXT, and NS-ShS calculi can be
used with the following commands:

• NS-ShS: colibri2

• NS-BASE: colibri2 --nseq-base

• NS-EXT: colibri2 --nseq-ext

For comparison, cvc5 (version 1.2.0) and Z3 (version 4.13.3) were used as reference
solvers. Three configurations of cvc5, each using a different strategy for handling sequence
operations, were used:

• cvc5: cvc5

• cvc5-eager: cvc5 --seq-arrays=eager

• cvc5-lazy: cvc5 --seq-arrays=lazy

• Z3: z3

Figures 5.2 and 5.3 show the number of goals solved over accumulated time for se-
quence and n-indexed sequence benchmarks, respectively. Detailed statistics, including
the number of goals solved, timeouts, errors, and runtime metrics (average, median, and
total solving time), are presented in Tables 5.1 to 5.4.

5.2.1 Translated n-Indexed Sequence Benchmarks
As previously mentioned, similarly to what was done in [113], QF_AX benchmarks were
translated into the theory of n-indexed sequences. That was done by replacing the sort
of indices with integers, the sort of arrays with the sort of n-sequences, and the array
operations select and store with the n-sequence operations get and set, respectively.

To compare the native calculi approach with the encoding approach described in
Section 4.2.1, an alternative version of the benchmarks was created, in which the tests
were translated into the theory of n-indexed sequences, and the operations of the theory of
n-indexed sequences were defined using the operations of the sequence and ADT theories,
instead of being treated as built-in theory symbols.

Figure 5.2 shows that NS-ShS performs best overall on unsatisfiable benchmarks,
solving a larger number of goals than other solvers in the same time frame. It is followed
closely by NS-EXT. NS-BASE performs better than Z3 and slightly worse than cvc5,
though it trails behind the others.

Table 5.1 confirms that NS-ShS achieves the best overall results (85 goals solved) with
an average runtime of 1.266 seconds. It is followed by NS-EXT which solves 79 goals
with a low average runtime of 0.893 seconds. While NS-ShS and NS-EXT have similar

1Available at: https://git.frama-c.com/pub/colibrics/-/tree/acta_informatica_2024
(commit SHA: 8d654690eb5c08643a87f0e41334f66311186e40)

117

https://git.frama-c.com/pub/colibrics/-/tree/acta_informatica_2024

Figure 5.2: Number of solved goals by accumulated time in seconds on quantifier-free NSeq
benchmarks translated from the QF_AX SMT-LIB benchmarks.

Solver Solved Timeout Err. Unk. Avg. T. Med. T. Tot. T.
NS-BASE 48 116 0 0 0.893 0.145 42.844
NS-EXT 79 85 0 0 0.932 0.109 73.589
NS-ShS 85 79 0 0 1.266 0.143 107.599
cvc5 50 114 0 0 2.434 1.573 121.695
cvc5-eager 72 92 0 0 1.301 0.167 93.669
cvc5-lazy 75 89 0 0 1.491 0.211 111.813
z3 25 23 0 0 2.546 2.105 63.656

Table 5.1: Statistics on the performance of the solvers on quantifier-free unsatisfiable
NSeq benchmarks.

median times (0.143 and 0.109 seconds, respectively), the average solving time of NS-ShS
is higher, and its total runtime exceeds 100 seconds. In contrast, NS-EXT’s total runtime
is only 73.589 seconds. This suggests that the difference in average and total time is
likely due to the six additional tests solved only by NS-ShS that complete near the time
limit. It’s also worth noting that NS-BASE solves 48 goals, slightly fewer than cvc5 (50
goals), but with significantly lower average, median, and total runtimes (0.893, 0.145,
and 42.844 seconds, respectively) compared to cvc5 (2.434, 1.573, and 121.695 seconds).

These benchmarks originate from array benchmarks and contain many get and set
operations, which, as shown in the rules of Figure 4.3, require multiple decisions and
introduce n-sequence normal forms containing small n-sequence components. As a re-
sult, the solver demands substantial computation and does not scale well for such cases.

Solver Solved Timeout Err. Unk. Avg. T. Med. T. Tot. T.
NS-BASE 158 229 0 0 0.292 0.163 46.189
NS-EXT 212 175 0 0 0.728 0.128 154.234
NS-ShS 197 190 0 0 1.100 0.133 216.742

Table 5.2: Statistics on the performance of the solvers on quantifier-free satisfiable NSeq
benchmarks.

118

Reasoning over such problems would likely benefit from clause learning, which could help
manage decisions more efficiently.

Regarding satisfiable goals, Figure 5.2 and table 5.2 shows that only Colibri2 managed
to solve goals within the time limit, with NS-EXT clearly surpassing NS-ShS and NS-
BASE in both speed and number of goals solved. That is notably due to the presence of
quantifiers in the encoding of n-sequences with sequences and algebraic data types that
is used for the other solvers, which makes them unable to solve satisfiable problems.

Table 5.2 indicates that while NS-ShS solves fewer goals (197) than NS-EXT (212),
its average, median, and total runtimes (1.100, 0.133, and 216.742 seconds) are higher
than those of NS-EXT (0.728, 0.128, and 154.234 seconds), suggesting that model gener-
ation works better with the word-equation-based approach than with the relations-based
approach.

5.2.2 Translated Sequence Benchmarks
Support for the theory of sequences was implemented by encoding it atop the theory
of n-indexed sequences. To evaluate the performance of this support for the theory of
sequences, it was compared with the calculi implemented in cvc5 and Z3 on sequence
benchmarks, which were translated from the QF_AX benchmarks.

Figure 5.3: Number of solved goals by accumulated time in seconds on quantifier-free Seq
benchmarks translated from the QF_AX SMT-LIB benchmarks.

The plot on the right in Figure 5.3 and the data in Table 5.3 show that on unsatisfiable
goals, cvc5-lazy performs best overall among the solvers. It is followed by NS-ShS, cvc5-
eager, and NS-EXT, whose performances are similar. NS-BASE solves more goals than
cvc5 and Z3, and has lower average, median, and total runtimes (0.821, 0.163, and 38.594
seconds, respectively) than cvc5 (1.521, 0.748, and 68.455 seconds).

In the satisfiable case, Table 5.4 shows that NS-EXT performs better in the number of
goals solved as well as in average, median, and total runtime (169 goals and 0.245, 0.118,
and 41.336 seconds, respectively) compared to NS-BASE (156 goals and 0.359, 0.186, and
55.965 seconds) and NS-ShS (153 goals and 0.642, 0.119, and 98.165 seconds). In terms
of goals solved, cvc5-lazy (184) and cvc5 (171) outperform the others. These trends are
reflected in Figure 5.3, where the curve for NS-EXT rises steeply early on but levels off

119

Solver Solved Timeout Err. Unk. Avg. T. Med. T. Tot. T.
NS-BASE 47 117 0 0 0.821 0.163 38.594
NS-EXT 79 85 0 0 0.938 0.119 74.137
NS-ShS 85 79 0 0 1.397 0.169 118.705
cvc5 45 119 0 0 1.521 0.748 68.455
cvc5-eager 82 82 0 0 1.138 0.123 93.332
cvc5-lazy 90 74 0 0 1.461 0.097 131.477
z3 10 38 0 0 0.818 0.019 8.182

Table 5.3: Statistics on the performance of the solvers on quantifier-free unsatisfiable Seq
benchmarks.

Solver Solved Timeout Err. Unk. Avg. T. Med. T. Tot. T.
NS-BASE 156 231 0 0 0.359 0.186 55.965
NS-EXT 169 218 0 0 0.245 0.118 41.336
NS-ShS 153 234 0 0 0.642 0.119 98.165
cvc5 171 216 0 0 0.893 0.599 152.696
cvc5-eager 165 222 0 0 0.447 0.221 73.791
cvc5-lazy 184 203 0 0 0.599 0.158 110.254
z3 95 408 0 0 2.393 1.375 227.382

Table 5.4: Statistics on the performance of the solvers on quantifier-free satisfiable Seq
benchmarks.

before reaching the maximum. A similar trend is observed with NS-ShS and NS-BASE
compared to cvc5-eager, the curves are close to one another and cross each other, but
cvc5-eager ends up taking over.

5.2.3 Discussion
In the context of program verification, performance on unsatisfiable goals is of greater
importance, although the satisfiable cases remain valuable. Since Colibri2 constructs
concrete models before concluding satisfiability, it is crucial to improve the current model-
generation techniques for n-sequences.

For unsatisfiable goals, Colibri2 performs competitively with state-of-the-art SMT
solvers such as cvc5 and Z3. However, it has been observed that certain goals that
remain unsolved within a short timeout (e.g. 5 seconds) also remain unsolved even with
significantly longer timeouts. This suggests potential performance bottlenecks in the
propagators for the NSeq theory or that the problems simply require many decisions.

A notable pattern visible in Figures 5.2 and 5.3 is the presence of inflection points in
the performance curves of NS-BASE, NS-EXT, and NS-ShS. These may indicate that the
solver struggles with specific classes of problems, warranting further investigation.

It is also worth noting that the translation from the theory of sequences to the theory
of n-indexed sequences in Colibri2 often introduces more complex terms. Additionally,
Colibri2 currently does not implement clause learning, which can make the search space
exploration more costly compared to other SMT solvers.

120

Chapter 6

Arithmetic II: Extending Arithmetic
Reasoning for n-Indexed Sequences

When reasoning over n-indexed sequences as described in Chapter 4, terms of the form
x ≤ y(≤ z) appear in most inference rules. Therefore, being able to efficiently manage
and reason over them is important, first to help with arithmetic reasoning in general, and
also to help with reasoning over n-indexed sequences.

This chapter presents some of the experiments that were conducted in this direction.
Section 6.1 presents a difference logic reasoning engine that was implemented in Colibri2
to help reason over linear inequalities. Section 6.2 presents different ways in which the
labeled union-find data structure, through the constant difference relation, is exploited
to improve propagations between arithmetic terms in Colibri2.

6.1 Difference Logic
Difference logic [36] is a fragment of linear arithmetic that is restricted to handling only
constraints of the form x− y ≤ c, where x and y are integer, rational, or real arithmetic
variables and c is a numerical constant. Such constraints are common when working on
planning, scheduling, and program verification problems.

While the simplex algorithm can solve problems composed of such constraints, in
practice, the simplex algorithm is costly and should not be used frequently. Difference
logic, on the other hand, is usually reasoned about using a graph data structure and
graph exploration algorithms. These can also be costly but might allow making early
deductions that would decrease reliance on the simplex, notably in unsatisfiable cases.

6.1.1 The Constraints Graph
Given a difference logic problem defined by a set of arithmetic variables V and a set of
difference logic constraints C of the form x−y ≤ c such that c is a constant and {x, y} ⊂
V . The difference logic constraints graph is a directed labeled graph G = (V,Σ, E),
where the set of vertices V is the same set of variables V , Σ is the set of labels, which
are constant arithmetic terms, and E ⊆ V ×Σ×V is the set of labeled edges. Each edge
in the graph x

c← y represents a constraint of the form x − y ≤ c. Therefore, the set of
edges E is defined as E = {(x, c, y) | (x− y ≤ c) ∈ C}.

121

x y wz v−1 20

0

3

−4

Figure 6.2: Representation of a difference logic problem in the form of a graph.

Two variables x and y are connected in the difference logic graph if there exists a
path from one to the other. There is a path from a vertex y to x if there is a chain
of edges that goes from y to x: x cn← _ c1← y. From the chain of edges, the constraint
y − x ≤ c1 + . . .+ cn can be extracted.

x1 . . . xnd2 dn

d1

Figure 6.1: Illustration of a cycle in a
difference logic graph.

Contradictions can be detected from the differ-
ence logic graph. They occur when there exists
a negative cycle in the graph. Given n vertices
x1, . . . , xn, such that each xi has an outgoing edge
with weight di towards xi−1, except x1, for which
the outgoing edge goes to xn, as illustrated in Fig-
ure 6.1.

Figure 6.1 represents the following constraints:
x1 − x2 ≤ d2 ∧ . . . ∧ xn − x1 ≤ d1. If the cycle
formed by the path from xn to itself has a negative weight dcycle, then that implies that
xn − xn ≤ dcycle < 0, which implies 0 < 0, which is false.

Equalities can also be detected between variables in the difference logic graph. Given
two connected variables x and y, the strongest constraint on x−y corresponds to x−y ≤ d,
where d is the weight of the path with the smallest weight from y to x. If x − y ≤ d is
the strongest constraint from y to x, and y− x ≤ d′ is the strongest constraint from x to
y, and d = d′ = 0, then x − y ≤ 0 ∧ y − x ≤ 0, from which x − y = 0 can be deduced,
resulting in the detection of the equality x = y. Therefore, in a difference logic graph, if
the smallest weight of the path from x to y and from y to x is 0, then x = y.

Example 6.1. Given the difference logic problem composed of the following constraints:
y−x ≤ −1, w−y ≤ 2, x−z ≤ 0, z−y ≤ 0, v−y ≤ 3 and w−v ≤ −4. The difference logic
problem is unsatisfiable because of the negative cycle formed by the constraints: x−z ≤ 0,
z − y ≤ 0, and y − x ≤ −1.

Example 6.1 presents an unsatisfiable difference logic problem. Figure 6.2 illustrates
the corresponding difference logic graph for the problem in Example 6.1.

6.1.2 Solving Difference Logic Problems
Solving a difference logic problem consists in determining its satisfiability. As mentioned
in Section 6.1.1, a difference logic problem is unsatisfiable if its graph of constraints
contains a negative cycle. If the graph of constraints does not contain a negative cycle,
then the problem is satisfiable.

122

Bellman–Ford Algorithm

In a directed weighted graph, detecting negative cycles is typically done using the
Bellman–Ford algorithm, which computes the paths in a graph from a single source vertex
to all other vertices.

1 let iter_edges check ∆ s =
2 for (s, w, d) in E do
3 if ∆[d] > ∆[s] + w then (
4 ∆[d← ∆[s] + w]
5 if check then raise Contradiction
6)
7 done
8

9 let bellman_ford s: E → Σ =
10 let ∆ = Map.empty in
11 ∆[s← 0];
12 for i: 1 to |V | do (* |V | iterations *)
13 iter_edges (i = |V |) ∆ s
14 done;
15 ∆

Listing 6.1: Implementation of the Bellman–Ford algorithm used for negative cycle
detection in the difference logic graph.

The Bellman–Ford algorithm uses a mapping ∆ : V → Σ, in which each ∆[x] is the
distance of x from the source vertex. If x /∈ ∆, then ∆[x] = +∞.

Listing 6.1 shows the code of the algorithm. The function iter_edges iterates over all
the edges (s, w, d) of the graph and checks if the distance ∆[d] is greater than ∆[s] + w.
If it is, then ∆[d] is replaced by ∆[s] + w. This process is called edge relaxation. The
function also takes a boolean argument check which determines whether to check for
negative cycles, the value of the argument is only true on the nth iteration, where n
is the number of vertices in the graph. The algorithm does n − 1 iterations in which
the paths are simply relaxed. On the nth iteration, if any additional edge relaxation is
possible, then the graph contains at least one negative cycle.

The reason for the n − 1 iterations is that in a graph with n vertices, the shortest
path between any two nodes can contain at most n − 1 edges. Therefore, iterating over
the edges n − 1 times ensures that the shortest paths are computed. During the last
iteration, if an edge can still be relaxed after the shortest paths have been computed,
then a negative cycle exists.

Incremental Cycle-Detection Algorithm

The incremental negative cycle detection algorithm [36] does not rely on the Bellman–
Ford algorithm but checks whenever an edge is added to the difference logic graph if the
new edge introduces a negative cycle.

The algorithm uses an artificial vertex v∗, which has an outgoing edge of weight 0
towards all other vertices. By construction, it is assumed that v∗ is less than or equal to
every other vertex The algorithm also uses a mapping ∆v⋆ : V → Σ that associates to
each vertex in the graph its distance from the artificial node v∗.

123

1 let neg_cycle_check s h =
2 if not (Heap. is_empty h) then (
3 let (_, dheap, iheap) = Heap. min_elt h in
4 ∆v⋆ [dheap ← ∆v⋆ [dheap] + iheap];
5 for (wout, dout) ∈ E[dheap]
6 let inew = ∆v⋆ [dheap] + wout −∆v⋆ [dout] in
7 let (h, b) =
8 match Heap. find_first_opt
9 (fun (s′, d′, _) → s′ = dheap ∧ d′ = dout)

10 with
11 | None →
12 Heap.add (dheap, dout, inew) h, true
13 | Some i′ when i′ > inew →
14 Heap.add (dheap, dout, inew) h, true
15 | Some _ → h, false
16 in
17 if b ∧ s = dout ∧ inew < 0 then raise Contradiction ;
18 neg_cycle_check s h
19)
20

21 let on_new_edge s w d =
22 let i = ∆v⋆ [s] + w −∆v⋆ [d] in
23 if i < 0 then
24 let h = Heap. singleton (s, d, i) in
25 neg_cycle_check s h

Listing 6.2: Implementation of the incremental negative cycle detection algorithm in the
difference logic graph.

Listing 6.2 illustrates the code of the incremental negative cycle detection algorithm.
When a new edge (s, w, d) is added, its improvement to ∆v⋆ [d] is computed as i =
∆v⋆ [s] + w − ∆v⋆ [d]. If the new edge indeed improves the distance, i.e. i < 0, then the
improvement is propagated to all reachable vertices in the graph. As this improvement
is propagated, if the distance of the source node ∆v⋆ [s] ends up being improved, then it
can be improved indefinitely, meaning that a negative cycle exists.

6.1.3 Implementation
Difference logic reasoning is implemented in Colibri2 with the two negative cycle detection
approaches described in Section 6.1.2.

For each term of the form x ⋄ y, where x and y are arithmetic terms and ⋄ ∈ {≤,≥
, <,>,=, ̸=}, a decision is made on their truth value. When the value is set, if it is false,
the negation is applied (e.g. ¬(x > y)→ x ≤ y, ¬(x ̸= y)→ x = y, ...).

The normalize_add_constraint function illustrated in Listing 6.3 is used to normalize
terms into constraints of the form x − y ⋄ c, where x or y can be v0, which is a special
variable the value of which is zero.

The domain of polynomials is used to extract the polynomial representation of arith-
metic terms through the get_dompoly function. The extracted polynomials are in the form

124

(c, p) where c is a constant and p is a list of pairs (ci, vi) where the non-zero constants ci

are the coefficients and the terms vi are variables.

1 let normalize_add_constraint env ⋄ x y =
2 match get_dompoly env x, get_dompoly env y with
3 | None , None →
4 add_constraint (x− y ⋄ 0)
5 | Some (ax, []), None →
6 add_constraint (v0 − y ⋄ −ax)
7 | None , Some (ay, []) →
8 add_constraint (x− v0 ⋄ ay)
9 | Some (ax, [(cx, vx)]), None when cx = 1 →

10 add_constraint (vx − y ⋄ −ax)
11 | None , Some (ay, [(cy, vy)]) when cy = 1 →
12 add_constraint (x− vy ⋄ ay)
13 | Some (ax, [(cx, vx)]), Some (ay, [(cy, vy)]) when cx = 1 ∧ cy = 1 →
14 add_constraint (vx − vy ⋄ ay − ax)
15 | Some (ax, [(cx, vx)]), Some (ay, [(cy, vy)]) when cx = −1 ∧ cy = −1 →
16 add_constraint (vy − vx ⋄ ay − ax)
17 | Some (ax, [(cx1, vx1); (cx2, vx2)]), Some (ay, []) when cx1 = 1 ∧ cx2 = −1 →
18 add_constraint (vx1 − vx2 ⋄ ay − ax)
19 | Some (ax, [(cx1, vx1); (cx2, vx2)]), Some (ay, []) when cx1 = −1 ∧ cx2 = 1 →
20 add_constraint (vx2 − vx1 ⋄ ay − ax)
21 | Some (ax, []), Some (ay, [(cy1, vy1); (cy2, vy2)]) when cy1 = 1 ∧ cy2 = −1 →
22 add_constraint (vy2 − vy1 ⋄ ay − ax)
23 | Some (ax, []), Some (ay, [(cy1, vy1); (cy2, vy2)]) when cy1 = −1 ∧ cy2 = 1 →
24 add_constraint (vy1 − vy2 ⋄ ay − ax)
25 | _ →
26 add_constraint (x− y ⋄ 0)

Listing 6.3: Normalization of binary arithmetic operations for difference logic.

The constraints are added to the difference logic constraints graph through the
add_constraint function. This function takes constraints of the form x − y ⋄ c, and if
⋄ ∈ {≥, <,>,=, ̸=}, it converts them into x− y ≤ c as follows:

• x− y ≥ c becomes y − x ≤ −c.

• x− y < c becomes x− y ≤ c− ϵ.

• x− y > c becomes y − x ≤ −c− ϵ.

• x− y = c becomes the two constraints x− y ≤ c and y − x ≤ c.

• x− y ̸= c: a decision is made to choose which one of x− y < c or x− y > c to set
to true, such that:

– x− y < c becomes x− y ≤ c− ϵ

– x− y > c becomes y − x ≤ −c− ϵ

125

When working on integers, ϵ is simply 1, and when working on rationals (resp. reals),
then ϵ is an infinitesimal rational (resp. real) considered smaller than any other rational
(resp.real).

Changes in the constant difference relation are taken into account to update the differ-
ence logic graph. That is done by defining a hook that is triggered when a representative
variable ro in the constant difference relation becomes a non-representative, with rn as
the new representative and a difference of δ between them. This hook adds, for each
outgoing edge from ro to a vertex no with weight co, an edge from rn to no with weight
co + δ, and for each incoming edge from a vertex ni with weight ci, an edge from ni to rn

with weight ci − δ. The hook then removes the vertex ro and its incoming and outgoing
edges since its constraints are represented by the edges that were added to rn.

6.1.4 Experimental evaluation
The experimental evaluation was conducted on the SMT-LIB benchmarks of difference
logic problems QF_IDL, QF_RDL, QF_UFIDL, and UFIDL, using a timeout of 60
seconds per goal.

The experimentation compares five configurations of Colibri2:

• BASE: the default Colibri2 configuration, using the simplex.

• DL: the Bellman–Ford-based difference logic engine.

• DL-Incr: the incremental difference logic engine.

• DL-Incr-NS: DL-Incr with the simplex disabled.

• DL-NS: DL with the simplex disabled.

The goal of this evaluation is to determine the contribution of the difference logic
engines and to assess whether they bring significant improvements over the simplex-based
default reasoning.

Figure 6.3: Number of solved goals by accumulated time in seconds on difference logic bench-
marks.

126

Solver Solved Timeout Err. Unk. Avg. T. Med. T. Tot. T.
BASE 283 1500 4 2 5.728 0.959 1621.102
DL 285 1498 4 2 5.665 1.176 1614.497
DL-NS 229 1554 4 2 5.273 0.742 1207.553
DL-Incr 291 1492 4 2 5.800 1.087 1687.679
DL-Incr-NS 258 1525 4 2 5.305 0.934 1368.624

Figure 6.4: Statistics for satisfiable benchmarks using Colibri2 with and without the difference
logic engines.

Solver Solved Timeout Err. Unk. Avg. T. Med. T. Tot. T.
BASE 356 1131 12 10 5.152 0.447 1833.963
DL 360 1136 12 1 5.218 0.504 1878.645
DL-NS 352 1139 12 6 5.257 0.514 1850.597
DL-Incr 364 1132 12 1 5.039 0.492 1834.206
DL-Incr-NS 382 1112 12 3 5.919 0.510 2261.098

Figure 6.5: Statistics for unsatisfiable benchmarks using Colibri2 with and without the difference
logic engines.

For satisfiable benchmarks, Figure 6.4 and the left plot of Figure 6.3 show that the
combination of the simplex with the incremental difference logic engine DL-Incr produces
the best results. The DL configuration follows closely, and its performance is close to that
of BASE. The simplex-free variants DL-NS and DL-Incr-NS perform significantly worse,
with DL-NS being the weakest.

This degradation of the performance of the approaches that do not use the simplex on
satisfiable benchmarks is expected, as the current implementation does not exploit the
difference logic engine during model generation, incorporating it would likely improve
performance on satisfiable goals.

For unsatisfiable benchmarks, however, Figure 6.5 and the right plot of Figure 6.3
show that three configurations that use the difference logic engines DL-Incr-NS, DL-Incr
and DL solve more goals than BASE. With notably the simplex-free incremental solver DL-
Incr-NS achieving the best overall performance. This is unsurprising as these benchmarks
are specifically designed for difference logic, and the simplex algorithm, known to be
costly in worst-case behaviour [116], adds a significant cost, especially in goals for which
using it is not necessary. This explains why DL-Incr-NS surpasses even DL-Incr in this
setting.

Overall, the difference logic engines provide slight improvements in Colibri2, partic-
ularly on unsatisfiable benchmarks, but further work is needed to evaluate their impact
on benchmarks not tailored to difference logic. Using the difference logic engines during
model generation and adding support for equality detection within the engines is ex-
pected to improve results notably on satisfiable problems. A tighter integration with the
simplex, allowing mutual sharing of inequalities and enabling each system to handle the
constraints best suited to it, may also improve the performance.

127

6.2 Labeled Union-Find for Constraint Propagation
In Colibri2, the labeled union-find data structure, used through the constant difference
relation described in Section 3.2.3, is also used for constraint propagation, notably in
the interval domain described in Section 3.1.1, to help with problems for which standard
propagations are not sufficient to prove validity.

int t [1 0] [1 0] ;
i f (0 <= 10∗ i + j < 90){

a = t [i] [j + 1] ; . . .
}

Figure 6.6: Fragment of C program.

While working on the theory of sequences (dy-
namically sized arrays [3]), a lack of propagation of
the interval domain between some arithmetic terms
was noticed. For example, in Figure 6.6, t is repre-
sented as a unique sequence of size 100, with access
modeled as nth(t, 10i+(j+1)). This requires prov-
ing that 10i + (j + 1) ∈ [0; 99], which cannot be
deduced from 10i+ j ∈ [0; 89] using the basic inter-
val propagation described in Section 3.1.2, which is
the method used in Colibri2 by default. This version of Colibri2 will be referred to as
base.

Example 6.2. Given two real variables a and b, a function f(x) = 2a + x + 3b and the
assertion that 10 < f(4) holds. Then f(9)2 ≤ 225 is unsatisfiable for any values of a and
b.

The problem in Example 6.2 only uses one multiplication, yet the basic propagations
in base are not sufficient to solve it. It would be solvable with a full-fledged decision
procedure for non-linear arithmetic, but that is difficult to implement and costly. The
simplex algorithm can, in theory, also be used for this propagation, but adding the
negation of every unknown comparison or calling a maximization and minimization for
every term is costly. Alternatively, a propagation between f(4) and f(9), which are at a
constant difference of 5, would suffice.

In this section, two ways to do such propagations are presented. The first one, called
labeled-uf, uses Colibri2’s interval domain in conjunction with the constant difference
relation to compute a reduced product of the two and produce more refined interval
domains for arithmetic terms that are at a constant difference from one another. The
second, called group-action, consists in reimplementing the interval domain so that
in a class of the constant difference relation labeled union-find, only the interval domain
of the representative is maintained, and the domains of the non-representatives in that
class can be computed from the domain of the representative when necessary.

6.2.1 Labeled Union-Find for Reduced Product Computation
The constant difference relation makes it possible to propagate constraints on interval
domains between arithmetic terms that are in the same constant difference class. The goal
with labeled-uf is to have, for every constant difference class, the following invariants
hold:

Invariant 1 When the interval domain of a node is updated and the triggered hooks
by the update have finished running, then no additional propagation be-

128

tween the interval domains of the elements of the class can lead to further
refinements.

Invariant 2 Either all elements of the class have a set interval domain, or none of them
do.

To ensure that these invariants are always maintained, two additional propagation
hooks are needed, one for when the interval domain of a node is updated and another for
when two constant difference classes are merged.

Interval Domain Update Hook

The first hook waits on the interval domain of any arithmetic node. When the interval
domain is updated, whether it is set for the first time or changed after being set, the
hook ensures that the interval domains of all the other nodes in its constant difference
class are also updated by recomputing the reduced product of the interval domain and
the constant difference relation for all the nodes in the constant difference class.

1 let updintrdom_class env (m : L→ E) (Ir : RI): unit =
2 Map.iter (fun n−1

d n →
3 upd_dom env n (Ir + nd)
4) m
5

6 let on_updintrdom_hook env (ρ, γ) (x : E) (Ix : RI): unit =
7 let (xr, xd) = ρ[x] in
8 let Ir = Ix − xd in
9 let rm = γ[xr] in

10 let r′
m = Map. remove x−1

d rm in
11 updintrdom_class env r′

m Ir

Listing 6.4: Interval domain update hook function.

Listing 6.4 shows the code of the hook function. It takes as arguments the node x,
which is the node whose interval domain was changed, as well as the interval domain
element Ix, which is the resulting interval domain after the update. The interval domain
of x was either initialized to Ix, or Ix resulted from an intersection between x’s old domain
and a new domain with which it was updated. If the intersection did not refine x’s interval
domain, then the hook is not triggered.

The hook function on_updintrdom_hook computes Ir (line 8) by subtracting xd from
Ix, which is the interval domain with which to update the interval domain of the represen-
tative xr of the constant difference class of x (line 7). It gets the map rm of the elements
of the constant difference class of xr (line 9), removes x from it (line 10) because its do-
main is already updated, then iterates over the elements of the class to compute the new
domains with which to update their domains (line 11) with the function updintrdom_class
(lines 1 to 4).

This hook ensures that Invariant 2 holds, as it ensures that the domains of all the
nodes in a constant difference class are set when the domain of one of them is set. It also
partially ensures Invariant 1, since it recomputes the reduced product when the interval
domain of a node in a constant difference class changes. However, it is not sufficient,

129

since propagations can also be done when the representative of a class changes after a
merge with another class, for example.

Constant Difference Class Representative Change Hook

The second is a constant difference representative change hook which is triggered when-
ever two constant difference classes are merged. Its purpose is to propagate the interval
domains in both directions between the two classes, which allows computing the reduced
product of the resulting constant difference class. This hook is also triggered when a
node n is added to a constant difference class s, since it also acts as a merger between a
singleton class containing only n and the class s.

1 let repr_change_hook env (ρ, γ) (or : E) (δ : L) (r : E): unit =
2 match get_domI env or , get_domI env nr with
3 | None , None → ()
4 | Some Io, None →
5 let In = Io − δ in
6 updintrdom_class env γ[nr] In

7 | None , Some In →
8 let Io = In + δ in
9 updintrdom_class env γ[or] Io

10 | Some Io, Some In →
11 let In+δ = In + δ in
12 let I ′

o =
13 match interI Io In+δ with
14 | None → raise Contradiction
15 | Some I ′

o → I ′
o

16 in
17 let I ′

n = I ′
o − δ in

18 let om = γ[or] in
19 updintrdom_class env I ′

o γ[or];
20 updintrdom_class env I ′

n γ[nr]

Listing 6.5: Constant difference class represetative change hook function.

Listing 6.5 illustrates the code of the representative change hook that is used. When
two constant difference classes s1 and s2, with representatives or and nr respectively, are
merged, and nr is chosen as the representative of the new class. The hook is called in or,
δ and nr, such that δ is the difference between or and nr, and if δ ̸= 0, it will be the label
on the new edge from or to nr.

This hook function starts by checking the interval domains of both nodes or and nr.
And splits into 4 cases:

• When neither or nor nr have a set interval domain, nothing is done.

• When or has a set interval domain Io, while nr does not, a new interval domain In

is computed for nr by subtracting δ from Io, and is propagated to all the nodes in
the constant difference class of nr.

• Conversely, when nr has a set interval domain and or does not, Io is computed for
or by adding δ to In.

130

0. init: 1. assert (b ≤ 7):

2. repr_change_hook(c, 10, b):

3. end:

a

b

c

d

7 −5

[−5; 5]

[2; 12]

[8; 16]

[3; 11]

a

b

c

d

7 −5

[−5; 5] ∩ [−5; 0]→ [−5; 0]

[2; 12] ≤ 7→ [2; 7]

[8; 16]

[3; 11]

a

b

c

d

7 −5

10[−5; 0] ∩ [−2; 0]→ [−2; 0]

[2; 7] ∩ [5; 7]→ [5; 7]

[8; 16] ∩ [5; 10]→ [8; 10]

[3; 11] ∩ [3; 5]→ [3; 5]

a

b

c

d

10

7 5
[−2, 0]

[5, 7]

[8, 10]

[3, 5]

Figure 6.7: Example of the usage of the constant difference relation for constraint propagation
over the domain of intervals.

• When both or and nr have set interval domains, Io and In respectively, In+δ is
created by adding δ to In, and an intersection between Io and In+δ is calculated to
conciliate the domains of the two representatives (after shifting). If the resulting
domain is empty, then a contradiction is raised because it means that the problem
is unsatisfiable. If it is not empty, then the result I ′

o is used to compute I ′
n by

subtracting δ. I ′
o and I ′

n, represent the domains with which to update the interval
domains or or and nr respectively, as well as those of their respective constant
difference classes.

With this propagation and the one described previously in Section 6.2.1, the two
cases in which the interval domain of a node can be refined through propagation over the
constant difference class it belongs to are covered, and the reduced product is recomputed
in both these cases, ensuring that Invariant 2 holds.

Example

Figure 6.7 shows how the constant difference relation is used for constraint propagation
over the domain of intervals using the hooks defined previously. The example starts in
step 0 with two trees representing the constant difference relation classes with a and c as
their representatives, and with set interval doamins for all the terms.

In step 1 the constraint b ≤ 7 is asserted, which leads to the pruning of the interval
domain of b from [2; 12] to [2; 7], this in turns triggers the domain update hook presented
in Listing 6.4, which leads to pruning the interval domain of a as well from [−5; 5] to

131

[−5; 0] though intersection between [−5; 5] and [2; 7] − 7 (the new interval domain of b
minus the label 7 on the edge from b to a).

The representative change hook is called in step 2 to set the representative of c to a
with the label 10. The call falls into the 4th case of the pattern matching in the code of
the function, presented in Listing 6.5, with Io = [8; 16], In = [−5; 0] and δ = 10, therefore
I ′

o = [8; 16] ∩ [5; 10] = [8; 10] and I ′
n = [8; 10]− 10 = [−2; 0]. I ′

o is then used to prune the
domains of c and d, while I ′

n is used to prune the domains of a and b.
Finally, in step 3 the merger of the classes is completed after their domains are up-

dated.

6.2.2 Domain Factorization with a Group Action
The operations that are done with labeled-uf in Section 6.2.1 to compute the reduced
product, notably addition between interval domain elements and constants, can be defined
as a group action over the group represented by the labels L (constants that represent
differences) and the set of interval domain elements RI .

The group action of sort AI : L × RI → RI is an addition operation between an
interval domain element and a constant. It simply comes down to addition between
an interval union and a singleton interval that represents the constant, i.e. shifting an
interval by a constant. The neutral element eL is zero for constant differences, and since
addition is associative, so is the group action.

When subtraction is used, e.g. I − δ, where I is an interval domain element and δ
is an arithmetic constant, it is also done through the group action since the subtraction
can be rewritten as I + δ−1.

group-action uses this group action definition to factorize the interval domains of
all arithmetic terms that are in the constant difference class. That can be done since the
group action allows computing the interval domain of any node from any other node. E.g.
if x = y+c, such that x and y are nodes and c is a constant, if Iy is the interval domain of
y, then the interval domain of x, Ix, can be computed: Ix = Iy +c. An additional mapping
θ : E → RI option is used to associate each representative r of a constant difference class
to its interval domain, which will be used to compute the interval domains of the other
non-representative elements of the constant difference class of r.

Listing 6.6 illustrates implementations of the get_dom and upd_dom functions that
are used with the implementation of the interval domain as a group action, as well as
the repr_change_hook hook function that is necessary to ensure that only one interval
domain is stored for each constant difference class.

The get_dom function, called on a node x, simply retrieves the interval domain of
the representative of the constant difference class to which x belongs (if it exists), and
then applies the group action to compute x’s interval domain and return it. Similarly,
the upd_dom function, when called on a node x with a new interval domain Ix, subtracts
from Ix the distance to the representative r of the constant difference class of x, becoming
Ixr, and then uses Ixr to update r’s interval domain. Finally, the repr_change_hook
ensures that when two constant difference classes are merged, the interval domains of
their representatives are merged and used as the interval domain of the representative of
the resulting class.

These functions ensure that this version of the interval domain behaves the same as

132

1 let get_domAI
(ρ, θ) x: RI option =

2 let (r, dx) = ρ[x] in
3 match θ[r] with
4 | None → None
5 | Some Ir → Some (Ir + dx)
6

7 let upd_domAI
(ρ, θ) x Ix: unit =

8 let (r, dx) = ρ[x] in
9 let Ixr = Ix − dx in

10 match θ[r] with
11 | None → θ[r ← Ixr]
12 | Some Ir →
13 match interI Ir Ixr with
14 | None → raise Contradiction
15 | Some I ′

r → θ[r ← I ′
r]

16

17 let repr_change_hookAI
(ρ, θ) (or : E) (δ : L) (nr : E): unit =

18 match get_domAI
(ρ, θ) or , get_domAI

(ρ, θ) nr with
19 | None , None
20 | None , Some _ → ()
21 | Some Io, None →
22 let In = Io − δ in
23 θ[or ← ∅];
24 θ[nr ← In]
25 | Some Io, Some In →
26 let Io−δ = Io − δ in
27 match interI Io−δ In with
28 | None → raise Contradiction
29 | Some I ′

n →
30 θ[or ← ∅];
31 θ[nr ← I ′

n]

Listing 6.6: Definitions of the get_dom, upd_dom and repr_change_hook functions, used
by the interval domain implemented as a group action AI .

the one described in Section 6.2.2, while factorizing the number of interval domains that
are used. This approach is called map factorization, and it is described in §5 in Lesbre,
Lemerre, Ait-El-Hara, and Bobot [80].

Example

Figure 6.8 is a modified version of Figure 6.7 in which map factorization is used. As
shown in step 0, only the representatives of the classes a and c have set interval domains.

When the constraint b ≤ 7 is asserted in step 1, what is propagated to the represen-
tative through the upd_domAI

function is the interval]−∞; 7]− 7, i.e. the interval from
the constraint from which the label on the edge from b to a was subtracted, resulting in
an interval domain of [−5; 0] for a.

In step 2, when the repr_change_hookAI
function is called, its 4th case in its top-level

133

0. init: 1. assert (b ≤ 7):

2. repr_change_hookAI
(c, 10, b):

3. end:

a

b

c

d

7 −5

[−5; 5] [8; 16] a

b

c

d

7 −5

[−5; 5]∩]−∞; 0]→ [−5; 0] [8; 16]

a

b

c

d

7 −5

10[−5; 0] ∩ [−2; 6]→ [−2; 0]

a

b

c

d

10

7 5
[−2, 0]

Figure 6.8: Example of the usage of the constant difference relation for constraint factorization
over the domain of intervals.

pattern matching is applied with Io = [8; 16] and In = [−2; 0]. The new interval is then
I ′

n = ([8; 16]− 10) ∩ [−2; 0] = [−2; 0], which is set as the interval domain of a, while the
interval domain of c is removed.

In the last step, the merger of the classes is completed with a as the new representative
with the interval domain [−2; 0].

Although the trees seem different, the information is the same as that stored in Fig-
ure 6.7. Calling get_domAI

on b results in [−2; 0] + 7 = [5; 7], while calling it on c results
in [−2; 0]+10 = [8; 10], which are the same domains associated with b and c in Figure 6.7.
The same applies for d.

6.2.3 Implementation
The implementations of labeled-uf and group-action, which were described in Sec-
tions 6.2.1 and 6.2.2 respectively, were made in the Colibri2 CP solver.

The original interval domain in Colibri2 was not designed as a group action for the
constant difference relation, since it was used to support both reals and integers. It
notably included a flag to indicate whether the intervals contained only integers or reals.
However, this flag was not a group action: for example, adding and then subtracting
0.5 to an interval of integers would result in a loss of precision. The flag was therefore
removed, and the modular congruence domain, described in Section 3.1.1, was added in
its stead.

This modular congruence domain is a group action for the constant difference relation.
It associates to an arithmetic term t a pair (a, b) which means that t can be written in the

134

form aZ + b, where Z denotes any integer constant. This domain serves as an additional
constraint on the possible values that a term can have.

Given the group representing constant differences in the constant difference relation
L, and the set of rational pairs that represent the elements of the modular congruence
domain Rmod, the group action of L on the set Rmod, of sort L×Rmod → Rmod, is defined
as follows for any c ∈ L and (a, b) ∈ Rmod:

c⊕ (a, b) = (a, (b+ c) mod a) .

Which has eL as the neutral element and is associative:

(c1 + c2)⊕ (a, b) = (a, (b+ c1 + c2) mod a)

c1 ⊕
(
c2 ⊕ (a, b)

)
= c1 ⊕ (a, (b+ c2) mod a)
=

(
a,

(
(b+ c2) mod a+ c1

)
mod a

)
= (a, (b+ c1 + c2) mod a) .

The initial implementations of labeled-uf and group-action showed some regres-
sions in the number of solved goals compared to base. These were mainly due to slow
convergences [31], i.e. very long or infinite sequences of propagations. With the additional
propagations that are done in labeled-uf and group-action, new slow convergences
were naturally introduced.

In Colibri2, these slow convergences are normally limited by stopping the propagations
on a node’s domain when it has been updated too many times (by default, 50 times
between decisions). But in this case, the presence of non-linear constraints, rationals,
and unbounded variables led to an unforeseen kind of slow convergence: the rational
numbers used in the bounds of the intervals grew too fast to fit into memory, e.g. by
converging to ±∞ or to a finite bound, leading to “out of memory” errors. To remedy
this, propagations on the interval domain are limited when its bounds take more than 20
memory words. This change allowed labeled-uf to be on par with base in the number
of goals solved.

For group-action, a second improvement was made: when propagations of con-
straints involving multiplications create a domain that uses numbers that are too large in
memory, the domains are over-approximated with bounds that use smaller denominators.
This change acts as a kind of on-demand floating-point approximation.

These improvements have been applied in all variants of the Colibri2 solver. Al-
though group-action benefited the most from these fixes, labeled-uf and base also
improved.

In the resulting implementations, both variants labeled-uf and group-action are
able to propagate between 10i+j and 10i+(j+1), for Figure 6.6, and solve Example 6.2.
This is something base cannot do.

6.2.4 Experimental Evaluation
To evaluate the implementations on a large scale, they were tested on the SMT-LIB [13]
2024 benchmarks [103] for integer and real arithmetic theories, corresponding to the
logics QF_LIA, QF_LRA, QF_LIRA, QF_IDL, QF_RDL, QF_NIA, QF_NRA, and

135

base labeled-uf
labeled-uf -49 +61 (+12)
group-action -65 +70 (+5) -39 +22 (-17)

Figure 6.9: Comparison of Colibri2 variants using different interval domains on SMT-LIB arith-
metic benchmarks.

QF_NIRA, totaling 55,449 problems. These problems include generated problems as well
as problems from other use cases of SMT solvers beyond program verification.

The experiments compare labeled-uf and group-action against base, the orig-
inal implementation in Colibri2. Experiments were conducted using six cluster nodes,
each equipped with 72 cores at 3GHz and 187GB of RAM. 30 cores per node were used,
for 180 parallel executions, with a time limit of one minute and a memory limit of 4GB
per problem.

Figure 6.9 presents the results of the experimental evaluation, the number of newly
solved (+), no longer solved (-) problems, and difference for each row compared to column.
In total, 17,465 problems are solved by base. Comparing only the number of solved
problems before the 60s timeout biases the result toward the problems that are solved
near the time limit. Therefore, it is considered that a solver variant improves on a problem
compared to another solver variant if it solves it in less than 55s (cutoff), while the other
is not able to solve it in 60s.

Both labeled-uf and group-action marginally improve upon base, with respec-
tively 12 and 5 more improvements. Interestingly, if a cutoff of 5s is used, 14 problems are
solved by both variants in less than 5s, while base cannot solve them in 60s (conversely,
there are 1 and 3 problems solved, respectively). However, for some problems that remain
to be investigated, group-action solves them much slower than labeled-uf or base.

In conclusion, the labeled union-find allowed for an easy implementation of new propa-
gations compared to base. labeled-uf and group-action achieve results comparable
to base, while being able to solve problems it cannot (e.g. the propagation in Figure 6.6
and Example 6.2). Yet the additional propagations have also introduced regressions,
which shows a possible trade-off between performing more propagations and suffering
slowdowns in the general case. It is also worth noting that group-action currently
lags behind labeled-uf, its implementation is more complex and requires further re-
finement. Finally, the next step will be to implement TVPE, which will enable even more
new propagations.

136

Chapter 7

Conclusion and Perspectives

This manuscript presented the results of this thesis. They consist of the theory of n-
indexed sequences as well as various ways to reason over it, their implementations, and
their experimental evaluations.

In addition, it described the formalization of parts of the arithmetic reasoning and
constraint propagation system in the Colibri2 CP solver, as well as the extensions to
arithmetic reasoning in Colibri2 that were made to improve its efficiency for reasoning
over n-indexed sequences.

This chapter concludes this manuscript with a discussion about some perspectives
and possible future work.

7.1 Implementation and Experimental Evaluation

While the implementations have shown comparable results with state-of-the-art SMT
solvers, the lack of clause learning in Colibri2 is a clear limitation that prevents scaling
the reasoning, notably in problems that intrinsically require many decisions. Therefore,
it would be interesting to see how adding some form of clause learning to Colibri2, or
implementing the calculi in an SMT solver with proper SAT solving and clause learning,
would perform.

Another limitation was noticed with model generation. As previously mentioned,
Colibri2 explicitly computes models, therefore, failing to generate a model quickly usually
means that constraint propagation is not complete and needs to be improved.

7.2 Proofs of Completeness and Decidability

Proofs of soundness of the inference rules were provided, but the question of completeness
was not truly explored. This is something that could eventually help with constraint
propagation in general and improve the results.

Another question that was not explored is the decidability of (fragments of) the theory.
Since other theories, such as that of strings and 0-indexed sequences, are known to be
undecidable, the results would likely be similar.

137

7.3 Applications
In this thesis, the theory of n-indexed sequences was shown to be useful for reasoning
over n-indexed sequences themselves, as well as for encoding 0-indexed sequences and
getting comparable results with state-of-the-art SMT solvers.

It would be interesting to explore other use cases for such n-indexed sequences, notably
for reasoning about other data structures or even memory model representations.

138

Bibliography

[1] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kremer.
“Deciding the consistency of non-linear real arithmetic constraints with a conflict
driven search using cylindrical algebraic coverings”. In: Journal of Logical and
Algebraic Methods in Programming 119 (2021), p. 100633. issn: 2352-2208. doi:
10.1016/j.jlamp.2020.100633.

[2] Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. “An SMT The-
ory for n-Indexed Sequences”. In: Proceedings of the 22nd International Workshop
on Satisfiability Modulo Theories. Ed. by Giles Reger and Yoni Zohar. Vol. 3725.
CEUR Workshop Proceedings. Montreal, Canada: CEUR, July 2024, pp. 64–74.
url: https://ceur-ws.org/Vol-3725/#short13.

[3] Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. “On SMT The-
ory Design: The Case of Sequences”. In: LPAR 2024 Complementary Volume. Ed.
by Nikolaj Bjørner, Marijn Heule, and Andrei Voronkov. Vol. 18. Kalpa Publica-
tions in Computing. EasyChair, May 2024, pp. 14–29. doi: 10.29007/75tl.

[4] Hichem Rami Ait-El-Hara, François Bobot, and Guillaume Bury. “Reasoning over
n-indexed sequences in SMT”. In: Acta Informatica 62.3 (Aug. 2025), p. 33. issn:
1432-0525. doi: 10.1007/s00236-025-00496-w.

[5] Hichem Rami Ait-El-Hara, Guillaume Bury, Basile Clément, and Pierre Villemot.
“Constraint Propagation for Bit-Vectors in Alt-Ergo”. en. In: Joint Proceedings of
the 23rd International Workshop on Satisfiability Modulo Theories and the 16th
Pragmatics of SAT International Workshop. Ed. by Jochen Hoenicke, Mikoláš
Janota, Aina Niemetz, and Sophie Tourret. Vol. 4008. CEUR Workshop Proceed-
ings. ISSN: 1613-0073. Glasgow, UK: CEUR, Aug. 2025, pp. 65–76. url: https:
//ceur-ws.org/Vol-4008/#SMT_paper20.

[6] Akers. “Binary Decision Diagrams”. In: IEEE Transactions on Computers C-27.6
(1978), pp. 509–516. doi: 10.1109/TC.1978.1675141.

[7] Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer. “Snap-
shottable Stores”. In: Proc. ACM Program. Lang. 8.ICFP (Aug. 2024). doi: 10.
1145/3674637.

[8] Léo Andrès, Filipe Marques, Arthur Carcano, Pierre Chambart, José Fragoso
Santos, and Jean-Christophe Filliâtre. “Owi: Performant Parallel Symbolic Ex-
ecution Made Easy, an Application to WebAssembly”. In: The Art, Science, and
Engineering of Programming 9.1 (Oct. 2024). issn: 2473-7321. doi: 10.22152/
programming-journal.org/2025/9/3.

139

https://doi.org/10.1016/j.jlamp.2020.100633
https://ceur-ws.org/Vol-3725/#short13
https://doi.org/10.29007/75tl
https://doi.org/10.1007/s00236-025-00496-w
https://ceur-ws.org/Vol-4008/#SMT_paper20
https://ceur-ws.org/Vol-4008/#SMT_paper20
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1145/3674637
https://doi.org/10.1145/3674637
https://doi.org/10.22152/programming-journal.org/2025/9/3
https://doi.org/10.22152/programming-journal.org/2025/9/3

[9] “Arrays”. In: The Calculus of Computation: Decision Procedures with Applications
to Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 291–310.
isbn: 978-3-540-74113-8. doi: 10.1007/978-3-540-74113-8_11.

[10] Gilles Audemard and Laurent Simon. “On the Glucose SAT Solver”. In: Inter-
national Journal on Artificial Intelligence Tools 27.01 (2018), p. 1840001. doi:
10.1142/S0218213018400018.

[11] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lach-
nitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz,
Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. “cvc5: A Versatile and Industrial-Strength SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of Systems -
28th International Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, Part I. Ed. by Dana Fisman and Grigore Rosu.
Vol. 13243. Lecture Notes in Computer Science. Munich, Germany: Springer, 2022,
pp. 415–442. doi: 10.1007/978-3-030-99524-9_24.

[12] Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and Aaron
Stump. “6 Years of SMT-COMP”. In: Journal of Automated Reasoning 50.3 (Mar.
2013), pp. 243–277. issn: 1573-0670. doi: 10.1007/s10817-012-9246-5.

[13] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org. 2016.

[14] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.7. Tech. rep. Available at www.SMT-LIB.org. Department of Computer Sci-
ence, The University of Iowa, 2025.

[15] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Chapter
33. Satisfiability Modulo Theories”. In: Handbook of Satisfiability. IOS Press, 2021,
pp. 1267–1329. doi: 10.3233/FAIA201017.

[16] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB Standard: Ver-
sion 2.0”. In: Proceedings of the 8th International Workshop on Satisfiability Mod-
ulo Theories (Edinburgh, UK). Ed. by A. Gupta and D. Kroening. 2010.

[17] Clark W. Barrett, David L. Dill, and Aaron Stump. “A Generalization of Shostak’s
Method for Combining Decision Procedures”. In: Proceedings of the 4th Interna-
tional Workshop on Frontiers of Combining Systems. FroCoS ’02. Berlin, Hei-
delberg: Springer-Verlag, 2002, pp. 132–146. isbn: 3540433813. doi: 10.5555/
646821.706603.

[18] Peter van Beek and Xinguang Chen. “CPlan: a constraint programming approach
to planning”. In: Proceedings of the Sixteenth National Conference on Artificial
Intelligence and the Eleventh Innovative Applications of Artificial Intelligence
Conference Innovative Applications of Artificial Intelligence. AAAI ’99/IAAI ’99.
Orlando, Florida, USA: American Association for Artificial Intelligence, 1999,
pp. 585–590. isbn: 0262511061. doi: 10.5555/315149.315406.

140

https://doi.org/10.1007/978-3-540-74113-8_11
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/s10817-012-9246-5
www.SMT-LIB.org
https://doi.org/10.3233/FAIA201017
https://doi.org/10.5555/646821.706603
https://doi.org/10.5555/646821.706603
https://doi.org/10.5555/315149.315406

[19] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. “Z3str3: a string solver with
theory-aware heuristics”. In: Proceedings of the 17th Conference on Formal Meth-
ods in Computer-Aided Design. FMCAD ’17. Vienna, Austria: FMCAD Inc, Oct.
2017, pp. 55–59. isbn: 978-0-9835678-7-5. doi: 10.5555/3168451.3168468.

[20] Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and
Florian Pollitt. “CaDiCaL 2.0”. In: Computer Aided Verification - 36th Interna-
tional Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceed-
ings, Part I. Ed. by Arie Gurfinkel and Vijay Ganesh. Vol. 14681. Lecture Notes
in Computer Science. Springer, 2024, pp. 133–152. doi: 10.1007/978-3-031-
65627-9_7.

[21] Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and
Florian Pollitt. “CaDiCaL, Gimsatul, IsaSAT and Kissat Entering the SAT Com-
petition 2024”. In: Proc. of SAT Competition 2024 – Solver, Benchmark and Proof
Checker Descriptions. Ed. by Marijn Heule, Markus Iser, Matti Järvisalo, and
Martin Suda. Vol. B-2024-1. Department of Computer Science Report Series B.
University of Helsinki, 2024, pp. 8–10.

[22] Armin Biere, Mathias Fleury, Nils Froleyks, and J.H. Marijn Heule. “The SAT Mu-
seum”. In: Proceedings of the 14th Internantional Workshop on Pragmatics of SAT
Co-located with the 26th International Conference on Theory and Applicationas
of Satisfiability Testing (SAT 2003), Alghero, Italy, July, 4, 2023. Ed. by Matti
Järvisalo and Daniel Le Berre. Vol. 3545. CEUR Workshop Proceedings. CEUR-
WS.org, 2023, pp. 72–87. url: http://ceur-ws.org/Vol-3545/paper6.pdf.

[23] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability. Sec-
ond edition. Amsterdam: IOS Press, 2021. isbn: 9781643681610.

[24] Armin Biere and Daniel Kröning. “SAT-Based Model Checking”. In: Handbook of
Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,
and Roderick Bloem. Cham: Springer International Publishing, 2018, pp. 277–303.
isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8_10.

[25] N Bjørner, Vijay Ganesh, R Michel, and Margus Veanes. “An SMT-LIB Format
for Sequences and Regular Expressions”. In: Strings (Jan. 2012).

[26] Jasmin Christian Blanchette and Andrei Paskevich. “TFF1: The TPTP Typed
First-Order Form with Rank-1 Polymorphism”. In: Automated Deduction – CADE-
24. Ed. by Maria Paola Bonacina. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 414–420. isbn: 978-3-642-38574-2. doi: 10.1007/978-3-642-38574-
2_29.

[27] Bernard Boigelot, Pascal Fontaine, and Baptiste Vergain. “Decidability of Differ-
ence Logic over the Reals with Uninterpreted Unary Predicates”. en. In: Automated
Deduction – CADE 29. Ed. by Brigitte Pientka and Cesare Tinelli. Lecture Notes
in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 542–559.
isbn: 978-3-031-38499-8. doi: 10.1007/978-3-031-38499-8_31.

[28] Maria Paola Bonacina. “Set of Support, Demodulation, Paramodulation: A Histor-
ical Perspective”. In: Journal of Automated Reasoning 66.4 (Nov. 2022), pp. 463–
497. issn: 1573-0670. doi: 10.1007/s10817-022-09628-0.

141

https://doi.org/10.5555/3168451.3168468
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/978-3-031-65627-9_7
http://ceur-ws.org/Vol-3545/paper6.pdf
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-031-38499-8_31
https://doi.org/10.1007/s10817-022-09628-0

[29] Maria Paola Bonacina, Stephane Graham-Lengrand, and Natarajan Shankar. “CD-
SAT for Nondisjoint Theories with Shared Predicates: Arrays With Abstract
Length”. In: Proceedings of the 20th International Workshop on Satisfiability Mod-
ulo Theories (SMT). Ed. by David Deharbe and Antti E. Hyvarinen. Vol. 3185.
CEUR Proceedings. CEUR WS-org, Aug. 2022, pp. 18–37. url: https://ceur-
ws.org/Vol-3185/paper9712.pdf.

[30] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. “Conflict-
Driven Satisfiability for Theory Combination: Transition System and Complete-
ness”. In: Journal of Automated Reasoning 64.3 (Mar. 2020), pp. 579–609. issn:
1573-0670. doi: 10.1007/s10817-018-09510-y.

[31] Lucas Bordeaux, Youssef Hamadi, and Moshe Y. Vardi. “An Analysis of Slow
Convergence in Interval Propagation”. In: Principles and Practice of Constraint
Programming – CP 2007. Ed. by Christian Bessière. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 790–797. isbn: 978-3-540-74970-7. doi: 10.1007/978-
3-540-74970-7_56.

[32] Stéphane Bourdais, Philippe Galinier, and Gilles Pesant. “hibiscus: A Constraint
Programming Application to Staff Scheduling in Health Care”. In: Principles and
Practice of Constraint Programming – CP 2003. Ed. by Francesca Rossi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 153–167. isbn: 978-3-540-45193-
8. doi: 10.1007/978-3-540-45193-8_11.

[33] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. “Efficient implementation
of a BDD package”. In: Proceedings of the 27th ACM/IEEE Design Automation
Conference. DAC ’90. Orlando, Florida, USA: Association for Computing Machin-
ery, 1991, pp. 40–45. isbn: 0897913639. doi: 10.1145/123186.123222.

[34] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. “What’s Decidable About
Arrays?” In: Verification, Model Checking, and Abstract Interpretation. Ed. by
E. Allen Emerson and Kedar S. Namjoshi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 427–442. isbn: 978-3-540-31622-0. doi: 10.1007/11609773_
28.

[35] Cristian Cadar and Martin Nowack. “KLEE symbolic execution engine in 2019”.
In: International Journal on Software Tools for Technology Transfer 23.6 (Dec.
2021), pp. 867–870. issn: 1433-2787. doi: 10.1007/s10009-020-00570-3.

[36] Diego Caminha Barbosa de Oliveira. “Fragments of arithmetic in a combination of
decision procedures”. PhD Thesis. Université Nancy II, Mar. 2011. url: https:
//theses.hal.science/tel-00578254.

[37] Jürgen Christ and Jochen Hoenicke. “Weakly Equivalent Arrays”. In: Frontiers
of Combining Systems. Ed. by Carsten Lutz and Silvio Ranise. Cham: Springer
International Publishing, 2015, pp. 119–134. isbn: 978-3-319-24246-0. doi: 10.
1007/978-3-319-24246-0_8.

142

https://ceur-ws.org/Vol-3185/paper9712.pdf
https://ceur-ws.org/Vol-3185/paper9712.pdf
https://doi.org/10.1007/s10817-018-09510-y
https://doi.org/10.1007/978-3-540-74970-7_56
https://doi.org/10.1007/978-3-540-74970-7_56
https://doi.org/10.1007/978-3-540-45193-8_11
https://doi.org/10.1145/123186.123222
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/s10009-020-00570-3
https://theses.hal.science/tel-00578254
https://theses.hal.science/tel-00578254
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8

[38] Edmund Clarke, Muralidhar Talupur, Helmut Veith, and Dong Wang. “SAT Based
Predicate Abstraction for Hardware Verification”. In: Theory and Applications of
Satisfiability Testing. Ed. by Enrico Giunchiglia and Armando Tacchella. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 78–92. isbn: 978-3-540-24605-3.
doi: 10.1007/978-3-540-24605-3_7.

[39] Alain Colmerauer and Philippe Roussel. “The birth of Prolog”. In: History of
Programming Languages—II. New York, NY, USA: Association for Computing
Machinery, 1996, pp. 331–367. isbn: 0201895021. doi: 10.1145/234286.1057820.

[40] Sylvain Conchon, Evelyne Contejean, Johannes Kanig, and Stéphane Lescuyer.
“CC(X): Semantic Combination of Congruence Closure with Solvable Theories”.
In: Electronic Notes in Theoretical Computer Science 198.2 (2008). Proceedings
of the 5th International Workshop on Satisfiability Modulo Theories (SMT 2007),
pp. 51–69. issn: 1571-0661. doi: 10.1016/j.entcs.2008.04.080.

[41] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout.
“Alt-Ergo 2.2”. In: SMT Workshop: International Workshop on Satisfiability Mod-
ulo Theories. Oxford, United Kingdom, July 2018. url: https://inria.hal.
science/hal-01960203.

[42] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints”. In:
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. Los Angeles, California: ACM Press,
New York, NY, 1977, pp. 238–252. doi: 10.1145/512950.512973.

[43] Pascal Cuoq and Raphaël Rieu-Helft. “Result graphs for an abstract interpretation-
based static analyzer”. In: 28èmes Journées Francophones des Langages Applicat-
ifs. Ed. by Julien Signoles and Sylvie Boldo. Gourette, France, Jan. 2017. url:
https://hal.science/hal-01503064.

[44] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,
Marie-Laure Potet, and Jean-Yves Marion. “BINSEC/SE: A Dynamic Symbolic
Execution Toolkit for Binary-Level Analysis”. In: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER). Vol. 1.
2016, pp. 653–656. doi: 10.1109/SANER.2016.43.

[45] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Commun. ACM 5.7 (July 1962), pp. 394–397. issn: 0001-
0782. doi: 10.1145/368273.368557.

[46] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantification
Theory”. In: J. ACM 7.3 (July 1960), pp. 201–215. issn: 0004-5411. doi: 10.
1145/321033.321034.

[47] Luc De Raedt, Tias Guns, and Siegfried Nijssen. “Constraint Programming for
Data Mining and Machine Learning”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 24.1 (July 2010), pp. 1671–1675. doi: 10.1609/aaai.
v24i1.7707.

143

https://doi.org/10.1007/978-3-540-24605-3_7
https://doi.org/10.1145/234286.1057820
https://doi.org/10.1016/j.entcs.2008.04.080
https://inria.hal.science/hal-01960203
https://inria.hal.science/hal-01960203
https://doi.org/10.1145/512950.512973
https://hal.science/hal-01503064
https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1609/aaai.v24i1.7707
https://doi.org/10.1609/aaai.v24i1.7707

[48] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. “Variations on the Com-
mon Subexpression Problem”. In: J. ACM 27.4 (Oct. 1980), pp. 758–771. issn:
0004-5411. doi: 10.1145/322217.322228.

[49] Bruno Dutertre and Leonardo de Moura. “A Fast Linear-Arithmetic Solver for
DPLL(T)”. In: Computer Aided Verification. Ed. by Thomas Ball and Robert
B. Jones. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 81–94. isbn:
978-3-540-37411-4. doi: 10.1007/11817963_11.

[50] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In: Theory and
Applications of Satisfiability Testing. Ed. by Enrico Giunchiglia and Armando
Tacchella. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–518. isbn:
978-3-540-24605-3. doi: 10.1007/978-3-540-24605-3_37.

[51] Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld. “Automatic SAT-
compilation of planning problems”. In: Proceedings of the Fifteenth International
Joint Conference on Artifical Intelligence - Volume 2. IJCAI’97. Nagoya, Japan:
Morgan Kaufmann Publishers Inc., 1997, pp. 1169–1176. isbn: 15558604804. doi:
10.5555/1622270.1622325.

[52] Stephan Falke, Florian Merz, and Carsten Sinz. “Extending the Theory of Arrays:
memset, memcpy, and Beyond”. In: Verified Software: Theories, Tools, Experi-
ments. Ed. by Ernie Cohen and Andrey Rybalchenko. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 108–128. isbn: 978-3-642-54108-7. doi: 10.1007/978-
3-642-54108-7_6.

[53] Thibaut Feydy, Andreas Schutt, and Peter J. Stuckey. “Global difference con-
straint propagation for finite domain solvers”. In: Proceedings of the 10th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming. PPDP ’08. Valencia, Spain: Association for Computing Machinery,
2008, pp. 226–235. isbn: 9781605581170. doi: 10.1145/1389449.1389478.

[54] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 — Where Programs Meet
Provers”. In: Programming Languages and Systems. Ed. by Matthias Felleisen and
Philippa Gardner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 125–
128. doi: 10.1007/978-3-642-37036-6_8.

[55] Melvin Fitting. First-Order Logic and Automated Theorem Proving. New York,
NY: Springer, 1996. isbn: 978-1-4612-7515-2 978-1-4612-2360-3. doi: 10.1007/
978-1-4612-2360-3.

[56] Eugene C. Freuder and Alan K. Mackworth. “Chapter 2 - Constraint Satisfac-
tion: An Emerging Paradigm”. In: Handbook of Constraint Programming. Ed. by
Francesca Rossi, Peter van Beek, and Toby Walsh. Vol. 2. Foundations of Artificial
Intelligence. Elsevier, 2006, pp. 13–27. doi: 10.1016/S1574-6526(06)80006-4.

[57] Carlo A. Furia. “What’s Decidable about Sequences?” In: Automated Technol-
ogy for Verification and Analysis. Ed. by Ahmed Bouajjani and Wei-Ngan Chin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 128–142. isbn: 978-3-
642-15643-4. doi: 10.1007/978-3-642-15643-4_11.

144

https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.5555/1622270.1622325
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1145/1389449.1389478
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1016/S1574-6526(06)80006-4
https://doi.org/10.1007/978-3-642-15643-4_11

[58] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. “Word
Equations with Length Constraints: What’s Decidable?” In: Hardware and Soft-
ware: Verification and Testing. Ed. by Armin Biere, Amir Nahir, and Tanja Vos.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 209–226. isbn: 978-3-
642-39611-3. doi: 10.1007/978-3-642-39611-3_21.

[59] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified For-
mulas in Satisfiabiliby Modulo Theories”. In: Computer Aided Verification. Ed. by
Ahmed Bouajjani and Oded Maler. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 306–320. isbn: 978-3-642-02658-4. doi: 10.1007/978-3-642-02658-
4_25.

[60] Evgueni Goldberg and Yakov Novikov. “BerkMin: A Fast and Robust Sat-Solver”.
In: Design, Automation, and Test in Europe: The Most Influential Papers of 10
Years Date. Ed. by Rudy Lauwereins and Jan Madsen. Dordrecht: Springer Nether-
lands, 2008, pp. 465–478. isbn: 978-1-4020-6488-3. doi: 10.1007/978-1-4020-
6488-3_34.

[61] Arnaud Gotlieb. “TCAS software verification using constraint programming”. In:
The Knowledge Engineering Review 27.3 (2012), pp. 343–360. doi: 10 . 1017 /
S0269888912000252.

[62] Philippe Granger. “Static analyses of congruence properties on rational numbers
(extended abstract)”. In: Static Analysis. Ed. by Pascal Van Hentenryck. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 278–292. isbn: 978-3-540-69576-
9. doi: 10.1007/BFb0032748.

[63] Philippe Granger. “Static analysis of arithmetical congruences”. In: International
Journal of Computer Mathematics 30.3-4 (1989), pp. 165–190. doi: 10.1080/
00207168908803778.

[64] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Mul-
tiple Precision Arithmetic Library. 5.0.5. 2012. url: http://gmplib.org/.

[65] Jun Gu. “Efficient local search for very large-scale satisfiability problems”. In:
SIGART Bull. 3.1 (Jan. 1992), pp. 8–12. issn: 0163-5719. doi: 10.1145/130836.
130837.

[66] Aarti Gupta, Malay K. Ganai, and Chao Wang. “SAT-Based Verification Methods
and Applications in Hardware Verification”. In: Formal Methods for Hardware
Verification. Ed. by Marco Bernardo and Alessandro Cimatti. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 108–143. isbn: 978-3-540-34305-9. doi: 10.
1007/11757283_5.

[67] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, and Naren-
dra Jussien. “Solving a real-time allocation problem with constraint program-
ming”. In: Journal of Systems and Software 81.1 (2008), pp. 132–149. issn: 0164-
1212. doi: 10.1016/j.jss.2007.02.032.

[68] IEEE Computer Society. IEEE Standard Glossary of Software Engineering Ter-
minology. IEEE Std 610.12-1990. Institute of Electrical and Electronics Engineers.
New York, NY, USA, Dec. 1990. doi: 10.1109/IEEESTD.1990.101064.

145

https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-1-4020-6488-3_34
https://doi.org/10.1007/978-1-4020-6488-3_34
https://doi.org/10.1017/S0269888912000252
https://doi.org/10.1017/S0269888912000252
https://doi.org/10.1007/BFb0032748
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1080/00207168908803778
http://gmplib.org/
https://doi.org/10.1145/130836.130837
https://doi.org/10.1145/130836.130837
https://doi.org/10.1007/11757283_5
https://doi.org/10.1007/11757283_5
https://doi.org/10.1016/j.jss.2007.02.032
https://doi.org/10.1109/IEEESTD.1990.101064

[69] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar.
“Efficient SAT-based bounded model checking for software verification”. In: The-
oretical Computer Science 404.3 (2008). International Symposium on Leveraging
Applications of Formal Methods (ISoLA 2004), pp. 256–274. issn: 0304-3975. doi:
10.1016/j.tcs.2008.03.013.

[70] Artur Jeż, Anthony W. Lin, Oliver Markgraf, and Philipp Rümmer. “Decision
Procedures for Sequence Theories”. In: Computer Aided Verification. Ed. by Con-
stantin Enea and Akash Lal. Lecture Notes in Computer Science. Cham: Springer
Nature Switzerland, 2023, pp. 18–40. isbn: 978-3-031-37703-7. doi: 10.1007/978-
3-031-37703-7_2.

[71] Fredrik Johansson. “Calcium: computing in exact real and complex fields”. In:
Proceedings of the 2021 on International Symposium on Symbolic and Algebraic
Computation. 2021, pp. 225–232.

[72] George Katsirelos and Fahiem Bacchus. “Generalized nogoods in CSPs”. In: Pro-
ceedings of the 20th National Conference on Artificial Intelligence - Volume 1.
AAAI’05. Pittsburgh, Pennsylvania: AAAI Press, 2005, pp. 390–396. isbn: 157735236x.
doi: 10.5555/1619332.1619396.

[73] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. “Frama-C: A software analysis perspective”. In: Formal Aspects of
Computing 27.3 (May 2015), pp. 573–609. issn: 1433-299X. doi: 10.1007/s00165-
014-0326-7.

[74] Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”.
In: Proceedings of the 25th International Conference on Computer Aided Verifica-
tion - Volume 8044. CAV 2013. Saint Petersburg, Russia: Springer-Verlag, 2013,
pp. 1–35. isbn: 9783642397981. doi: 10.5555/2958031.2958033.

[75] Daniel Kroening and Ofer Strichman. “Equality Logic and Uninterpreted Func-
tions”. In: Decision Procedures: An Algorithmic Point of View. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2016, pp. 77–95. isbn: 978-3-662-50497-0. doi:
10.1007/978-3-662-50497-0_4.

[76] Daniel Kroening and Michael Tautschnig. “CBMC – C Bounded Model Checker”.
In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Erika Ábrahám and Klaus Havelund. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2014, pp. 389–391. isbn: 978-3-642-54862-8. doi: 10.1007/978- 3- 642-
54862-8_26.

[77] C. Y. Lee. “Representation of switching circuits by binary-decision programs”. In:
The Bell System Technical Journal 38.4 (1959), pp. 985–999. doi: 10.1002/j.
1538-7305.1959.tb01585.x.

[78] K. R. M. Leino and Clément Pit-Claudel. “Trigger Selection Strategies to Stabilize
Program Verifiers”. In: Computer Aided Verification. Ed. by Swarat Chaudhuri
and Azadeh Farzan. Cham: Springer International Publishing, 2016, pp. 361–381.
isbn: 978-3-319-41528-4. doi: 10.1007/978-3-319-41528-4_20.

146

https://doi.org/10.1016/j.tcs.2008.03.013
https://doi.org/10.1007/978-3-031-37703-7_2
https://doi.org/10.1007/978-3-031-37703-7_2
https://doi.org/10.5555/1619332.1619396
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.5555/2958031.2958033
https://doi.org/10.1007/978-3-662-50497-0_4
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1007/978-3-319-41528-4_20

[79] K. Rustan M. Leino. “Dafny: an automatic program verifier for functional correct-
ness”. In: Proceedings of the 16th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning. LPAR’10. Dakar, Senegal: Springer-
Verlag, 2010, pp. 348–370. isbn: 3642175104. doi: 10.5555/1939141.1939161.

[80] Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François Bobot.
“Relational Abstractions Based on Labeled Union-Find”. In: Proc. ACM Program.
Lang. 9.PLDI (June 2025). doi: 10.1145/3729298.

[81] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.
“A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions”. In:
Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem. Cham:
Springer International Publishing, 2014, pp. 646–662. isbn: 978-3-319-08867-9.
doi: 10.1007/978-3-319-08867-9_43.

[82] J.P. Marques-Silva and K.A. Sakallah. “GRASP: a search algorithm for proposi-
tional satisfiability”. In: IEEE Transactions on Computers 48.5 (1999), pp. 506–
521. doi: 10.1109/12.769433.

[83] Joao Marques-Silva, Ines Lynce, and Sharad Malik. “Chapter 4. Conflict-Driven
Clause Learning SAT Solvers”. In: Handbook of Satisfiability. IOS Press, 2021,
pp. 133–182. doi: 10.3233/FAIA200987.

[84] Bruno Marre, François Bobot, and Zakaria Chihani. “Real Behavior of Floating
Point Numbers”. In: The SMT Workshop. SMT 2017, 15th International Workshop
on Satisfiability Modulo Theories. Heidelberg, Germany, July 2017. url: https:
//cea.hal.science/cea-01795760.

[85] John McCarthy. “Towards a Mathematical Science of Computation”. In: Informa-
tion Processing, Proceedings of the 2nd IFIP Congress 1962, Munich, Germany,
August 27 - September 1, 1962. North-Holland, 1962, pp. 21–28.

[86] John W. McCormick and Peter C. Chapin. Building High Integrity Applications
with SPARK. Cambridge: Cambridge University Press, 2015. isbn: 978-1-107-
04073-1. doi: 10.1017/CBO9781139629294.

[87] Kenneth L. McMillan, Andreas Kuehlmann, and Mooly Sagiv. “Generalizing DPLL
to Richer Logics”. In: Computer Aided Verification. Ed. by Ahmed Bouajjani and
Oded Maler. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 462–476.
isbn: 978-3-642-02658-4. doi: 10.1007/978-3-642-02658-4_35.

[88] Antoine Miné, Xavier Leroy, Pascal Cuoq, and Christophe Troestler. Zarith: Arbitrary-
precision arithmetic in OCaml. Accessed: 2025-06-05. 2010. url: https://github.
com/ocaml/Zarith.

[89] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. “Chaff: engineering an efficient SAT solver”. In: Proceedings of the 38th
Annual Design Automation Conference. DAC ’01. Las Vegas, Nevada, USA: As-
sociation for Computing Machinery, 2001, pp. 530–535. isbn: 1581132972. doi:
10.1145/378239.379017.

147

https://doi.org/10.5555/1939141.1939161
https://doi.org/10.1145/3729298
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1109/12.769433
https://doi.org/10.3233/FAIA200987
https://cea.hal.science/cea-01795760
https://cea.hal.science/cea-01795760
https://doi.org/10.1017/CBO9781139629294
https://doi.org/10.1007/978-3-642-02658-4_35
https://github.com/ocaml/Zarith
https://github.com/ocaml/Zarith
https://doi.org/10.1145/378239.379017

[90] Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”.
In: Automated Deduction – CADE-21. Ed. by Frank Pfenning. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 183–198. isbn: 978-3-540-73595-3. doi: 10.
1007/978-3-540-73595-3_13.

[91] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by C. R.
Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-
3_24.

[92] Leonardo de Moura and Dejan Jovanović. “A Model-Constructing Satisfiability
Calculus”. In: Verification, Model Checking, and Abstract Interpretation. Ed. by
Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–12. isbn: 978-3-642-35873-9. doi: 10 .
1007/978-3-642-35873-9_1.

[93] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and
Programming Language”. In: Automated Deduction – CADE 28: 28th Interna-
tional Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Pro-
ceedings. Berlin, Heidelberg: Springer-Verlag, 2021, pp. 625–635. isbn: 978-3-030-
79875-8. doi: 10.1007/978-3-030-79876-5_37.

[94] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. “Generalized, efficient array
decision procedures”. In: Proceedings of 9th International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin,
Texas, USA. IEEE, 2009, pp. 45–52. doi: 10.1109/FMCAD.2009.5351142.

[95] Alexander Nadel and Vadim Ryvchin. “Chronological Backtracking”. In: Theory
and Applications of Satisfiability Testing – SAT 2018. Ed. by Olaf Beyersdorff
and Christoph M. Wintersteiger. Cham: Springer International Publishing, 2018,
pp. 111–121. isbn: 978-3-319-94144-8. doi: 10.1007/978-3-319-94144-8_7.

[96] Greg Nelson and Derek C. Oppen. “Fast Decision Procedures Based on Congruence
Closure”. In: J. ACM 27.2 (Apr. 1980), pp. 356–364. issn: 0004-5411. doi: 10.
1145/322186.322198.

[97] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating Decision Proce-
dures”. In: ACM Trans. Program. Lang. Syst. 1.2 (Oct. 1979), pp. 245–257. issn:
0164-0925. doi: 10.1145/357073.357079.

[98] Aina Niemetz and Mathias Preiner. “Bitwuzla”. In: Computer Aided Verification
- 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Pro-
ceedings, Part II. Ed. by Constantin Enea and Akash Lal. Vol. 13965. Lecture
Notes in Computer Science. Springer, 2023, pp. 3–17. doi: 10.1007/978-3-031-
37703-7_1.

[99] Robert Nieuwenhuis and Albert Oliveras. “DPLL(T) with Exhaustive Theory
Propagation and Its Application to Difference Logic”. In: Computer Aided Ver-
ification. Ed. by Kousha Etessami and Sriram K. Rajamani. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 321–334. isbn: 978-3-540-31686-2. doi: 10.
1007/11513988_33.

148

https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33

[100] “5. The Rules of the Game”. In: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Ed. by Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 67–104. isbn: 978-3-540-45949-1.
doi: 10.1007/3-540-45949-9_5.

[101] Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. “A
Constraint Solver Based on Abstract Domains”. In: Verification, Model Check-
ing, and Abstract Interpretation. Ed. by Roberto Giacobazzi, Josh Berdine, and
Isabella Mastroeni. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 434–
454. isbn: 978-3-642-35873-9. doi: 10.1007/978-3-642-35873-9_26.

[102] Laurent Perron and Frédéric Didier. CP-SAT. Version v9.11. Google, May 7, 2024.
url: https://developers.google.com/optimization/cp/cp_solver/.

[103] Mathias Preiner, Hans-Jörg Schurr, Clark Barrett, Pascal Fontaine, Aina Niemetz,
and Cesare Tinelli. SMT-LIB release 2024 (non-incremental benchmarks). Ver-
sion 2024.04.23. Zenodo, Apr. 2024. doi: 10.5281/zenodo.11061097.

[104] Steven Prestwich. “Chapter 2. CNF Encodings”. In: Handbook of Satisfiability.
IOS Press, 2021, pp. 75–100. doi: 10.3233/FAIA200985.

[105] “Quantifier-Free Equality and Data Structures”. In: The Calculus of Computation:
Decision Procedures with Applications to Verification. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 241–268. isbn: 978-3-540-74113-8. doi: 10.1007/978-
3-540-74113-8_9.

[106] Jussi Rintanen. “Planning as satisfiability: Heuristics”. In: Artificial Intelligence
193 (2012), pp. 45–86. issn: 0004-3702. doi: 10.1016/j.artint.2012.08.001.

[107] J. A. Robinson. “A Machine-Oriented Logic Based on the Resolution Principle”.
In: J. ACM 12.1 (Jan. 1965), pp. 23–41. issn: 0004-5411. doi: 10.1145/321250.
321253.

[108] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming. USA: Elsevier Science Inc., 2006. isbn: 9780080463803.

[109] J. Schimpf and K. Shen. “ECLiPSe - from LP to CLP”. In: Theory and Practice of
Logic Programming 12.1-2 (2011), pp. 127–156. doi: 10.1017/S1471068411000469.

[110] Stephan Schulz. “E - a brainiac theorem prover”. In: AI Commun. 15.2,3 (Aug.
2002), pp. 111–126. issn: 0921-7126. doi: 10.5555/1218615.1218621.

[111] Bart Selman, Hector Levesque, and David Mitchell. “A new method for solving
hard satisfiability problems”. In: Proceedings of the Tenth National Conference on
Artificial Intelligence. AAAI’92. San Jose, California: AAAI Press, 1992, pp. 440–
446. isbn: 0262510634. doi: 10.5555/1867135.1867203.

[112] Natarajan Shankar and Harald Rueß. “Combining Shostak Theories”. In: Rewrit-
ing Techniques and Applications. Ed. by Sophie Tison. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 1–18. isbn: 978-3-540-45610-0. doi: 10.1007/3-540-
45610-4_1.

149

https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/978-3-642-35873-9_26
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.3233/FAIA200985
https://doi.org/10.1007/978-3-540-74113-8_9
https://doi.org/10.1007/978-3-540-74113-8_9
https://doi.org/10.1016/j.artint.2012.08.001
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1017/S1471068411000469
https://doi.org/10.5555/1218615.1218621
https://doi.org/10.5555/1867135.1867203
https://doi.org/10.1007/3-540-45610-4_1
https://doi.org/10.1007/3-540-45610-4_1

[113] Ying Sheng, Andres Nötzli, Andrew Reynolds, Yoni Zohar, David Dill, Wolfgang
Grieskamp, Junkil Park, Shaz Qadeer, Clark Barrett, and Cesare Tinelli. “Rea-
soning About Vectors: Satisfiability Modulo a Theory of Sequences”. In: Journal
of Automated Reasoning 67.3 (Sept. 2023), p. 32. issn: 1573-0670. doi: 10.1007/
s10817-023-09682-2.

[114] Robert E. Shostak. “Deciding Combinations of Theories”. In: J. ACM 31.1 (Jan.
1984), pp. 1–12. issn: 0004-5411. doi: 10.1145/2422.322411.

[115] Mate Soos, Karsten Nohl, and Claude Castelluccia. “Extending SAT Solvers to
Cryptographic Problems”. In: Theory and Applications of Satisfiability Testing
- SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30
- July 3, 2009. Proceedings. Ed. by Oliver Kullmann. Vol. 5584. Lecture Notes
in Computer Science. Springer, 2009, pp. 244–257. doi: 10.1007/978-3-642-
02777-2_24.

[116] Daniel A. Spielman and Shang-Hua Teng. “Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time”. In: J. ACM 51.3 (May
2004), pp. 385–463. issn: 0004-5411. doi: 10.1145/990308.990310.

[117] Geoff Sutcliffe. “The TPTP Problem Library and Associated Infrastructure”. In:
Journal of Automated Reasoning 59.4 (Dec. 2017), pp. 483–502. issn: 1573-0670.
doi: 10.1007/s10817-017-9407-7.

[118] Geoff Sutcliffe. “The TPTP World – Infrastructure for Automated Reasoning”.
In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by Edmund
M. Clarke and Andrei Voronkov. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 1–12. isbn: 978-3-642-17511-4. doi: 10.1007/978-3-642-17511-4_1.

[119] Robert E. Tarjan and Jan van Leeuwen. “Worst-case Analysis of Set Union Al-
gorithms”. In: J. ACM 31.2 (Mar. 1984), pp. 245–281. issn: 0004-5411. doi: 10.
1145/62.2160.

[120] Robert Endre Tarjan. “Efficiency of a Good But Not Linear Set Union Algorithm”.
In: J. ACM 22.2 (1975), pp. 215–225. doi: 10.1145/321879.321884.

[121] The Rocq Development Team. The Rocq Prover. Version 9.0. Apr. 2025. doi:
10.5281/zenodo.15149629.

[122] Peter van Beek. “Chapter 4 - Backtracking Search Algorithms”. In: Handbook
of Constraint Programming. Ed. by Francesca Rossi, Peter van Beek, and Toby
Walsh. Vol. 2. Foundations of Artificial Intelligence. Elsevier, 2006, pp. 85–134.
doi: 10.1016/S1574-6526(06)80008-8.

[123] Willem-Jan van Hoeve and Irit Katriel. “Chapter 6 - Global Constraints”. In:
Handbook of Constraint Programming. Ed. by Francesca Rossi, Peter van Beek, and
Toby Walsh. Vol. 2. Foundations of Artificial Intelligence. Elsevier, 2006, pp. 169–
208. doi: 10.1016/S1574-6526(06)80010-6.

[124] George Varghese and Tony Lauck. “Hashed and hierarchical timing wheels: Data
structures for the efficient implementation of a timer facility”. In: Proceedings of
the eleventh ACM Symposium on Operating systems principles. Vol. 21. 5. New
York, NY, USA: Association for Computing Machinery, 1987, pp. 25–38. doi:
10.1145/37499.37504.

150

https://doi.org/10.1007/s10817-023-09682-2
https://doi.org/10.1007/s10817-023-09682-2
https://doi.org/10.1145/2422.322411
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1145/990308.990310
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-642-17511-4_1
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/321879.321884
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.1016/S1574-6526(06)80008-8
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1145/37499.37504

[125] R. Vemuri and R. Kalyanaraman. “Generation of design verification tests from be-
havioral VHDL programs using path enumeration and constraint programming”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 3.2 (1995),
pp. 201–214. doi: 10.1109/92.386221.

[126] Mark Wallace. “Practical applications of constraint programming”. In: Constraints
1.1 (Sept. 1996), pp. 139–168. issn: 1572-9354. doi: 10.1007/BF00143881.

[127] Qinshi Wang and Andrew W. Appel. “A Solver for Arrays with Concatenation”.
In: Journal of Automated Reasoning 67.1 (Jan. 2023), p. 4. issn: 1573-0670. doi:
10.1007/s10817-022-09654-y.

[128] Ghiles Ziat. “A combination of abstract interpretation and constraint program-
ming”. PhD Thesis. Sorbonne Université, July 2019. url: https://theses.hal.
science/tel-03987752.

151

https://doi.org/10.1109/92.386221
https://doi.org/10.1007/BF00143881
https://doi.org/10.1007/s10817-022-09654-y
https://theses.hal.science/tel-03987752
https://theses.hal.science/tel-03987752

	Introduction
	Overview of the Thesis and Contributions
	Publications

	Background
	Boolean Satisfiability
	Many-Sorted First-Order Logic
	Solving FOL
	First-Order Theories

	Satisfiability Modulo Theories
	The SMT-LIB initiative
	The Core Theory
	Equality and Uninterpreted Functions
	The Theory of Integers

	Constraint Programming
	Abstract Domains in Constraint Programming

	The theory of Arrays
	Array Property Fragment
	Combinatory Array Logic
	Weakly Equivalent Arrays

	The theory of Sequences
	Existing theories
	Reasoning approaches

	Colibri2
	Architecture
	Theory implementations

	Arithmetic Ⅰ: Domains, Propagators and Relations
	Arithmetic reasoning in Colibri2
	Arithmetic domains
	Propagators

	Labeled Union-Find and The Constant Difference Relation
	The Union-Find data structure
	The Labeled Union-Find data structure
	Constant Difference Relation
	Shostak Theories and Constant Difference Relations

	𝑛-Indexed Sequences Ⅰ: Reasoning
	Syntax and Semantics
	Reasoning with existing theories
	Encoding 𝑛-Indexed Sequences using Sequences and Algebraic Data Types

	Porting Calculi from the Theory of Sequences to the Theory of 𝑛-Indexed Sequences
	Reasoning over Relocation
	The common calculus
	The base calculus
	The extended calculus
	Soundness Proofs

	Reasoning with Shared Slices
	Relations Graph
	Calculus
	Soundness Proofs

	𝑛-Indexed Sequences Ⅱ: Implementation and Evaluation
	Implementation
	𝑛-Indexed sequence Normal Forms
	Simplification rewrites
	Equivalence modulo relocation
	Reasoning
	Support for the Theory of Sequences
	Reasoning with Shared Slices

	Experimental Evaluation
	Translated 𝑛-Indexed Sequence Benchmarks
	Translated Sequence Benchmarks
	Discussion

	Arithmetic Ⅱ: Extending Arithmetic Reasoning for 𝑛-Indexed Sequences
	Difference Logic
	The Constraints Graph
	Solving Difference Logic Problems
	Implementation
	Experimental evaluation

	Labeled Union-Find for Constraint Propagation
	Labeled Union-Find for Reduced Product Computation
	Domain Factorization with a Group Action
	Implementation
	Experimental Evaluation

	Conclusion and Perspectives
	Implementation and Experimental Evaluation
	Proofs of Completeness and Decidability
	Applications

