
HAL Id: hal-04761767
https://inria.hal.science/hal-04761767v1

Preprint submitted on 31 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Smt.ml: A Multi-Backend Frontend for SMT Solvers in
OCaml

João Madeira Pereira, Filipe Marques, Pedro Adão, Hichem Rami Ait El
Hara, Léo Andrès, Arthur Carcano, Pierre Chambart, Nuno Santos, José

Fragoso Santos

To cite this version:
João Madeira Pereira, Filipe Marques, Pedro Adão, Hichem Rami Ait El Hara, Léo Andrès, et al..
Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml. 2024. �hal-04761767�

https://inria.hal.science/hal-04761767v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Smt.ml: A Multi-Backend Frontend for SMT

Solvers in OCaml

João Madeira Pereira1, Filipe Marques1, Pedro Adão1,
Hichem Rami Ait El Hara2,3, Léo Andrès2, Arthur Carcano2,
Pierre Chambart2, Nuno Santos1, and José Fragoso Santos1

1 University of Lisbon, Lisbon, Portugal
2 OCamlPro, Paris, France

3 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract. SMT solvers are essential for applications in arti�cial intelli-
gence, software veri�cation, and optimisation. However, no single solver
excels across all formula types, di�erent applications may require the use
of di�erent solvers. While the SMT-LIB language enables multi-solver
support, it incurs heavy I/O overhead. To address this, we introduce
Smt.ml, an SMT solver frontend for OCaml that simpli�es integration
with various solvers through a consistent interface. Its parametric encod-
ing facilitates the easy addition of new solver backends, while optimisa-
tions like formula simpli�cation, result caching, and detailed error feed-
back enhance performance and usability. Our evaluation demonstrates
that Smt.ml maintains correctness and performance comparable to in-
dividual solvers, with signi�cant improvements in batched interactions.

Keywords: SMT Solvers · Symbolic Execution · OCaml · SMT-LIB

1 Introduction

Since their emergence in the early 2000s, SMT solvers have become increasingly
relevant and are now fundamental to numerous applications in modern life. They
are applied in various scienti�c and industrial domains, ranging from planning
problems in arti�cial intelligence [15] to software veri�cation and test generation
in software engineering [6, 16, 27, 33], and even the optimisation of production
chains in operations research [10].

While there are now multiple industry-strength SMT solvers to choose from,
each has its own strengths and weaknesses, with no single solver excelling at
all types of formulas. Recent SMT-COMP [13] results reveal, for instance, that
cvc5 [5] achieved the best results in the category for bitvector formulas, while
Bitwuzla [40] was the best solver in the category of �oating-point arithmetic
formulas. This diversity of results indicates that there is no perfect solver for all
applications, and even in the context of the same application, it may be bene�cial
to use di�erent solvers for di�erent formulas.

One strategy to support multiple solvers is to use the SMT-LIB language [8],
a solver-agnostic textual format that is supported by multiple solvers. This ap-

2 J. M. Pereira et al.

proach involves serializing the given formula into an SMT-LIB formula and ex-
ecuting the most suitable solver on the generated �le. However, this strategy
is not e�ective for applications that require solving a large number of formulas
as solver interaction is mediated through the �le system, incurring heavy I/O
overhead. Therefore, using the SMT-LIB language does not adequately resolve
the challenge of supporting multiple solvers in performance-critical applications.

When performance is critical, solvers should be integrated into the client
application's code base as external libraries. To this end, each solver provides
an API that other applications can use to invoke its supported functionalities.
Unfortunately, these APIs are frequently inconsistent, buggy, and challenging
to use. Additionally, in strongly-typed functional programming languages such
as OCaml [35], Haskell [30], and Scala [42]�which are common choices for ap-
plications involving SMT solvers�there is frequently the added challenge of no
available API for various solvers.

To address these challenges, we introduce Smt.ml, a new SMT solver fron-
tend for OCaml. Smt.ml simpli�es the integration of OCaml programs with
multiple SMT solvers. It achieves this by providing a consistent SMT-LIB-
compatible language linked to four di�erent solver backends: Bitwuzla [40], Col-
ibri2 [11], cvc5 [5], and Z3 [22]. With Smt.ml, OCaml developers are not required
to understand the intricate details of these solvers' APIs to use them; they sim-
ply create an Smt.ml formula and select the desired solver backend. As part
of the Smt.ml development e�ort, we created new OCaml APIs for two SMT
solvers: Colibri2 [11] and cvc5 [5].

At the core of Smt.ml is a new parametric encoding that streamlines the
addition of new solver backends. More concretely, instead of writing an encoding
for each backend separately, we de�ned an interface that all backends must sup-
port and used this interface to translate Smt.ml formulas into the logics of the
di�erent backends. In addition to avoiding redundant code, this approach greatly
simpli�es the addition of new backends, which only need to implement our newly
de�ned interface. Beyond supporting the usage of various SMT solvers within
OCaml, Smt.ml presents additional bene�ts over using existing solver APIs di-
rectly: (1) it includes several simpli�cations that reduce formula complexity,
boosting solver performance; (2) it caches satis�ability results to avoid redun-
dant computations; and (3) it provides informative error feedback, streamlining
the debugging process.

Smt.ml is integrated into OPAM [51], the OCaml package manager, sim-
plifying its use for OCaml programmers. It is actively used in various research
projects both in academia [38] and industry [3]. Our evaluation demonstrates
that (1) the results produced by Smt.ml are consistent with those obtained by
directly using the supported solvers, i.e., Smt.ml does not introduce any bugs;
and (2) Smt.ml introduces no performance degradation with respect to the
direct use of the supported solvers and shows signi�cant performance improve-
ments for batched solver interactions.

The remainder of this paper is structured as follows: Section 2 provides an
overview of Smt.ml, discusses its bene�ts, and introduces the supported for-

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 3

Fig. 1: Overview of Smt.ml's architecture.

mula grammar; Section 3 describes our parametric translation from Smt.ml to
the formulas of each backend; Section 4 presents the simpli�cation and caching
mechanisms featured in Smt.ml; Section 5 evaluates Smt.ml's performance and
correctness, using the SMT-LIB benchmarks [45]; Section 6 presents a case study
of Smt.ml in symbolic execution; Section 7 discusses related work; and Finally,
Section 8 concludes the paper and discusses future work.

2 Architecture

Figure 1 presents a high-level overview of Smt.ml's architecture. While one can
use Smt.ml as a standalone tool, Smt.ml was primarily conceived to be used
as a library within an OCaml application. Hence, Smt.ml accepts both types
of inputs, native Smt.ml's formulas and SMT-LIB [8] textual formulas. In the
latter case, the formula is �rst parsed by the Parser Module (0) and converted
into an Smt.ml's native formula.

Given an Smt.ml's native formula, Smt.ml performs the following steps:

� Simpli�er Module Step (1): This module applies a range of transformations
to the given formula to reduce its complexity while preserving its original
semantics. For instance, it applies the following algebraic identity to simplify
bitvector formulas:

concat(extract(x, h,m), extract(x,m, l)) → extract(x, h, l)

4 J. M. Pereira et al.

� Cache Module Step (2): This module normalises the given formula, checks if
its satis�ability was already computed, and if so, returns the stored result.
The normalisation process includes operations like renaming of variables,
allowing cache hits to be maximised.

� Encoding Module Step (3): This module is responsible for encoding the for-
mula using the native OCaml bindings of the selected solver. It is parametric
on a generic solver interface facilitating its extension with support for new
solver backends.

2.1 Why use Smt.ml?

In this section, we discuss some of the primary advantages Smt.ml introduces
for developers working with SMT solvers in OCaml.

Solver Independence A key advantage of Smt.ml is the ability to interface
with multiple SMT solvers through a single solver-independent frontend. Tradi-
tionally, developers must tailor their code to the speci�c syntax and API of each
solver. Smt.ml eliminates this constraint, allowing developers to transparently
switch between solvers without the need to rewrite their entire program. By ab-
stracting the di�erences between solver APIs, Smt.ml enables the selection of
the most appropriate solver for a given problem. This decision can even be made
at runtime, allowing for the application of customised portfolio strategies [49].

Performance Optimisations Interactions with SMT solvers are computation-
ally expensive and can become a bottleneck in client applications. For instance,
these interactions are known to be one of the main performance degradation
factors in symbolic execution tools. To counter this issue, Smt.ml applies two
complementary strategies for minimising solver interactions and optimise per-
formance: formula simpli�cations and caching of satis�ability results. Formula
simpli�cations reduce the complexity of formulas, often even making them triv-
ially true/false and eliminating the need to query the solver at all. Caching
satis�ability results improves performance by avoiding redundant solver queries
for formulas that have already been checked. Smt.ml o�ers these two types of
solver-agnostic performance optimisations so that developers do not have the
burden of implementing them.

Usability OCaml bindings for SMT solvers often provide few type safety guar-
antees, with many using the same generic OCaml type to represent SMT expres-
sions denoting di�erent types of values, such as integers, strings, or booleans.
For instance, Z3's OCaml bindings use a single type for all general expressions,
regardless of their underlying sort. This approach results in ill-typed expressions
not being detected at compile time leading to runtime errors that are typically
hard to debug. Listing 1 illustrates this issue with a program that uses Z3's
bindings. The given program is able to apply an uninterpreted function that

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 5

Listing 1 Type violation of function declaration using Z3 OCaml bindings.
1 (* Function Declaration: foo : int -> int *)
2 let foo = FuncDecl.mk_func_decl_s ctx "foo" [int_sort] int_sort in
3
4 let str_sort = Seq.mk_string_sort ctx in
5 let value = Symbol.mk_string ctx "value" in
6 let str_const = Expr.mk_const ctx value str_sort in
7
8 let foo_app = Expr.mk_app ctx foo [str_const] in
9 (* foo(value) + 2 >= 2 *)

10 let formula = Arithmetic.mk_ge ctx
11 (Arithmetic.mk_add ctx [foo_app ; two]) two

expects an integer argument (line 7) to a string constant (line 13), resulting in a
runtime error stating that there is a mismatch between the expected and actual
argument types. In contrast, Smt.ml's expressions are well-typed by construc-
tion avoiding this type of bug. This promotes code correctness and reliability in
the development process.

2.2 Smt.ml Syntax

Figure 2 presents the syntax of Smt.ml. There are two main syntactic categories:
expressions, that denote values, and commands, that represent instructions given
to the solver.

On the whole, Smt.ml supports the quanti�er-free linear integer and real
arithmetic (QF_LIA and QF_LRA), bitvectors (QF_BV), �oating-point arithmetic
(QF_FP), and strings (QF_S) theories. These are the theories most commonly
required for software veri�cation and analysis tasks [4, 17], which are now the
current main applications of Smt.ml. However, Smt.ml has a modular and
extensible architecture, making it easy to add support for new theories.

Expressions Expressions in Smt.ml are built using values and operators. Val-
ues, v, include boolean constants (true and false), integers (int), reals (real),
strings (str), numeral constants (num), and lists of values. Numerals are machine
integers (8, 32 and 64-bit) or IEEE 754 �oating-point numbers [31] (32 and 64-
bit). Expressions, e, are constructed by combining values with symbolic variables
of the form xt, where x denotes the variable and t its type. Expressions are con-
structed through the application of a variety of operators. Smt.ml includes unary
(unop(op, t , e)), binary (binop(op, t , e, e)), ternary (triop(op, t , e, e, e)),
and n-ary (naryop(op, t , list e)) operators. Additionally, it includes rela-
tional operators (relop(op, t , e, e)) for comparisons and conversion operators
(cvtop(op, t , e)) for type casting or conversion between value types. In the
following, we refer to expressions of type Boolean as formulas.

Commands Smt.ml provides a set of commands to manipulate and interact
with the SMT solvers. Commands, c, include typical solver instructions such as
assert e, that asserts a given formula to the solver, and check_sat (list e),

6 J. M. Pereira et al.

Numeral Values

num ::= i8 | i32 | i64 | f32 | f64

Types

t ::= Ty_int | Ty_str | Ty_bitv int | Ty_bool | Ty_fp int | Ty_real
| Ty_unit | Ty_list | Ty_app

Values

v ∈ Vsmt ::= true | false | unit | int | real | str | num | list v

Formulas

e ∈ Esmt ::= v | xt | unop(op, t , e) | binop(op, t , e, e)
| triop(op, t , e, e, e) | relop(op, t , e, e) | cvtop(op, t , e)
| naryop(op, t , list e) | list e

Commands

c ∈ Csmt ::= assert e | check_sat (list e) | declare(xt) | exit
| get_model | get_value e | pop int | push int | reset

Fig. 2: Smt.ml's syntax.

that checks the satis�ability of a list of formulas. The command declare(xt)
is used to declare a new symbolic variable x of type t. Additional commands
include exit, used to terminate the interaction with the solver, get_model, to
retrieve a model when given a list of satis�able formulas, and get_value e,
that returns a satis�able value for the given expression. For state manipulation,
Smt.ml provides the push int and pop int , commands to introduce or remove
a number of assertion levels, respectively. Finally the reset command is used
to reset the solver's state allowing for a fresh set of assertions and commands to
be processed.

3 Encoding

The Encoding module is the core component of Smt.ml. It is responsible for
translating Smt.ml's native expressions and commands into the expressions and
commands of each solver backend. Instead of having an encoding module for
each backend, Smt.ml's encoding module is parametric on a Core Solver API,
S, that solvers are expected to implement, streamlining the addition of new
solver backends and avoiding code duplication. Having established this API,
obtaining the encoding of Smt.ml's logic into the logic of a speci�c solver is
straightforward: it su�ces to plug the target solver's implementation of the API
S into Smt.ml.

Naturally, we do not expect solver developers to implement our Core Solver
API. Instead, we build ourselves the wrappers around those solvers that do im-
plement the expected API and plug the obtained wrapped solvers into Smt.ml.
Figure 3 illustrates this process, showing how di�erent SMT solvers, each with its

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 7

�✁✂✄✁☎✆

✝✞✟✂✠✡✞✄

☛✂✠☞✌✍

✎✏✎✑

✒✓✔✕✖✗✕✘

✙✕✚✛✜✢✔✣

✤✂✌✥✍✁

✦✁☎✧✧✍✁★

✩✪

✤☛✫

✤✂✌✥✍✁★

Fig. 3: Smt.ml's parametric Solver module.

own speci�c API, can be integrated into Smt.ml by �rst being wrapped within
modules that implement the expected API.

Solver-Independent API The Core Solver API S lists all functions on solver
values, expressions, and commands on which the translation of Smt.ml expres-
sions and commands depends. These functions can be divided into the following
four main categories:

� Values: The functions in this category are responsible for mapping Smt.ml
primitive values, v ∈ Vsmt, into values from the corresponding target solver.

� Operators: These functions map Smt.ml operators to the corresponding
solver operators. For example, solver wrappers are expected to implement
the addition operator, which, when given two solver expressions, returns a
target solver expression representing their sum.

� Commands: The funtions in this category map Smt.ml commands, c ∈ Csmt,
into commands that manipulate and interact with the target solver.

� Lifting: This category contains functions that map solver values back to
Smt.ml values, v ∈ Vsmt. Such functions are essential when performing
model extraction tasks, for instance, as they allow models to be constructed
using Smt.ml's native values.

Parametric Translation Using the interface described above, we implement
a generic translation for converting Smt.ml constructs into the corresponding
solver-speci�c constructs. We formalise the main translation for expressions as a
function TS : Esmt → S.Expr that receives an Smt.ml expression e ∈ Esmt and
generates a target solver expression te ∈ S.Expr. Figure 4 presents some of the
parametric translation rules of Smt.ml.

8 J. M. Pereira et al.

Values

S.val(v) = v′

TS(v) = v′

Symbols

S.symbol(s) = s′

TS(s) = s′

Unary operators

TS(e) = te S.unop(uop, te) = e′

TS(uop e) = e′

n-ary operators

TS(ei) = e′i |ni=1 S.naryop(nop, [e′1, . . . , e′n]) = e′

TS(nop [e1, . . . , en]) = e′

Fig. 4: Parametric translation rules for Smt.ml.

Values v, and symbols s, are translated into their counterparts in the target
solver S, using the functions S.val(v) and S.symbol(s), respectively. Unary op-
erators uop e are translated into the application of the solver's unary operator
to the translation of the operation argument TS(e) = te, which is computed
using the Core Solver API function S.unop, which receives as inputs a unary
operator uop and a solver expression te and generates the solver expression that
denotes the application of uop to te. The translation proceeds similarly for bi-
nary, ternary, n-ary, and relational operators.

Currently, Smt.ml supports four backends solvers: Bitwuzla, Colibri2, cvc5,
and Z3. As part of the development of Smt.ml, we implemented the Core Solver
API wrapper for each of them. Furthermore, for cvc5 we had to implement its
entire OCaml bindings from scratch, as cvc5 came with no bindings for OCaml.
These bindings bridge the gap between OCaml and the solver's native C++ API,
allowing it to be integrated into Smt.ml.

4 Backend-independent Optimisations

Smt.ml's usefulness extends beyond its capability to interact with multiple SMT
solvers through a uni�ed syntax. A signi�cant aspect of its design is the inclusion
of backend-independent optimisations that enhance performance when checking
the satis�ability of logical formulas. In this section, we discuss two key optimi-
sations implemented in Smt.ml: expression simplications and caching.

4.1 Expression Simpli�cations

In applications that interact with SMT solvers, the solver's performance often
becomes the primary bottleneck, with the problem's size and complexity signif-
icantly a�ecting the solver's e�ciency [53]. To counter this, Smt.ml features a
set of simpli�cations that are applied to expressions in an attempt to reduce
their overall complexity, while maintaining their original meaning.

At the core of our expression-simpli�cation algorithm is a set of simpli�cation
rules r ∈ R of the form: f ? e1 → e2, meaning that if the formula f holds the
expression e1 can be rewritten as e2. For instance, the rule

r1 ≡ h− l = |x| ? extract(x, h, l) → x

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 9

Algorithm 1 Expression simpli�cation algorithm.

1: procedure Simplify(f)
2: f ′ ← f
3: for all r ∈ Rules do
4: f ′ ← apply r to f ′

5: if f ′ ̸= f then

6: return Simplify(f ′)
7: else

8: return f ′

states that the expression extract(x, h, l) can be rewritten as x if h− l coincides
with the size of x. In order to apply a simpli�cation rule f ? e1 → e2 to a given
expression e under an execution context where the formula f ′ holds, we proceeds
as follows:

1. �nd a substitution θ such that θ(e1) = e;
2. check if f ′ =⇒ θ(f);
3. replace e with θ(e2).

For instance, applying r1 to extract(concat(y, z), |y|+2, 0) yields the expression
concat(y, z) with substitution θ = [x 7→ concat(y, z), l 7→ 0, h 7→ |y|+ 2] under
the formula context f ′ ≡ |z| = 2.

Currently, Smt.ml performs constant folding for every theory (215 rules)
and comes with 62 additional simpli�cation rules, spanning the theories of bit-
vectors (28 rules), �oating point arithmetic (3 rules), boolean (2 rules), strings
(2 rules), and 27 generic rules which can be applied to multiple theories. The
rules must be carefully designed to ensure that the simpli�cations are sound
(i.e., the simpli�ed expression denotes the same values as the original one) and
to make sure that the simpli�cation process is not in�nite, meaning that rule
application does not generate simpli�cation loops, such as e

r1−→ e′
r2−→ e, where

e is the original expression, e′ is the simpli�ed expression, and r1 and r2 are two
simpli�cation rules.

With a set of sound and terminating simpli�cation rules established, de-
signing our expression-simpli�cation procedure becomes straightforward. Algo-
rithm 1 outlines this procedure: the main loop iterates through the set of simpli�-
cation rules, applying those whose constraints are satis�ed. The loop terminates
once no further rules can be applied to the expression at hand, indicating that
a �xed point has been reached.

4.2 Caching

Caching and Normalisation Caching of intermediate satis�ability results is
a standard technique used in SMT solvers and solver clients to improve perfor-
mance [43, 46]. However, it is not common for identical formulas to be queried
multiple times, even in applications that make an intensive use of SMT solvers.
To address this, formula caching systems [52] typically implement normalisation

10 J. M. Pereira et al.

Listing 2 Hash-consing constructor for boolean disjunction.
1 let table = Hashtbl.create 251
2 let mk_or hte1 hte2 =
3 let x = Binary (Or, hte1, hte2) in
4 try Hashtbl.find table x
5 with Not_found -> Hashtbl.add table x x; x

strategies with the goal of maximising cache hits. Smt.ml comes with its own
formula caching system equipped with a normalisation procedure that performs:

� Standardisation of associative operators: a standard order is imposed on
expressions that include such operators. For instance, considering the logical
or operator (commonly denoted by ∨), we have that (x∨y)∨z = x∨ (y∨z).
In Smt.ml, expressions that include chained associative operators are always
rewritten to ensure that the leftmost operations are performed �rst.

� Variable renaming: variables are renamed to ensure structurally identical
formulas with di�erent variable names are considered equal.

Caching Expressions via Hash-consing In addition to minimizing the num-
ber of queries, another way to enhance the performance of solver clients is to
reduce the number of formulas and expressions created at runtime. In fact, solver
clients often generate a large number of formulas, frequently with repeated el-
ements. As the number of queries grows, memory consumption increases, sig-
ni�cantly impacting client's performance; a prime example of this is symbolic
executors [18]. The standard technique to reduce the memory impact of solver
systems is the use of hash-consing [26], a technique that ensures that no two
physical copies of the same expression are ever created by storing expressions
in a hash table. Smt.ml includes a hash-consing module that prevents the du-
plication of identical expressions. To this end, whenever an Smt.ml expression
constructor is called, it checks whether the expression already exists, and, if it
does, returns the previously stored expression.

Listing 2 illustrates this process for the Or constructor. We de�ne the mk_or
hash-consing constructor, which builds a boolean disjunction between two hash-
consed expressions. In line 3, we construct the binary expression, and in line
4, we attempt to retrieve a previously constructed expression from the hash-
consing table. If the expression is not found (line 5), we add it to the table and
return the value constructed in line 3. Smt.ml only allows creating expressions
through these smart constructors, ensuring that every expression is correctly
hash-consed.

The more attentive reader might notice the extra heap allocation in line 3
when there already exists an hash-consed expression. Speci�cally, we allocate
memory to construct an expression, only to later use an existing one retrieved
from the hash-consing table. However, because OCaml initially allocates values
in the minor heap using a bump allocator [39], this allocation incurs no cost.
Additionally, OCaml can quickly collect the temporarily allocated values during
minor garbage collection.

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 11

5 Evaluation

We evaluate Smt.ml with respect to three evaluation questions:

� EQ1: Does Smt.ml exhibit consistent behaviour with the supported solvers?

� EQ2: Does Smt.ml exhibit consistent performance with the supported
solvers?

� EQ3: Does Smt.ml improve the performance of the supported solvers for
batched interactions?

5.1 Experimental Setup

To answer our research questions, we leverage the SMT-LIB benchmarks
dataset [45], more concretely, we focus on the benchmarks that cover the fol-
lowing theories

� Quanti�er-Free Linear Integer Arithmetic (QF_LIA);

� Quanti�er-Free Floating-Point Arithmetic (QF_FP);

� Quanti�er-Free Bitvector Arithmetic (QF_BV);

� Quanti�er-Free String Theory (QF_S);

� Quanti�er-Free String Theory and Linear Integer Arithmetic (QF_SLIA)

We chose these benchmarks as they cover the main theories supported by
Smt.ml solver backends, and because they are widely used in the SMT commu-
nity.

All experiments were performed on a server with a 12-core Intel Xeon
E5�2620 CPU and 32GB of RAM running Ubuntu 24.04.1 LTS. For compiling
Smt.ml, we used the OCaml 5.2.0 compiler. For the SMT solvers, we employed
Bitwuzla version 0.5.0, the development version of Colibri2 pinned to commit
1feba887, cvc5 version 1.2.0, and Z3 version 4.13.0.

The benchmarking code, reproducibility scripts, and diagram generation
scripts are all available in Smt.ml's GitHub repository.4

5.2 EQ1: Correctness

To assess the correctness of Smt.ml, we conducted a comparative evaluation
using the selected SMT-LIB benchmarks. Speci�cally, we compared the results
obtained when running Smt.ml on these benchmarks with the results produced
by executing each supported solver directly on the same datasets. Note that, each
benchmark in the SMT-LIB benchmark dataset is annotated with its expected
outcome, allowing us to cross-validate the results obtained from both Smt.ml

and the native solvers.

4 https://github.com/formalsec/smtml

12 J. M. Pereira et al.

0 100 200 300 400 500 600 700 800
Cumulative Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF FP

Z3
Smt.ml - Z3
cvc5
Smt.ml - cvc5
Bitwuzla
Smt.ml - Bitwuzla
Colibri2
Smt.ml - Colibri2

0 25000 50000 75000 100000 125000 150000 175000 200000
Cumulative Time (s)

0

2000

4000

6000

8000

10000

12000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF LIA

Z3
Smt.ml - Z3
cvc5
Smt.ml - cvc5
Colibri2
Smt.ml - Colibri2

0 100 200 300 400
Cumulative Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF BV

Z3
Smt.ml - Z3
cvc5
Smt.ml - cvc5
Bitwuzla
Smt.ml - Bitwuzla
Colibri2
Smt.ml - Colibri2

0 2000 4000 6000 8000 10000 12000
Cumulative Time (s)

0

2000

4000

6000

8000

10000

12000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF S

Z3
Smt.ml - Z3
cvc5
Smt.ml - cvc5

0 10000 20000 30000 40000 50000
Cumulative Time (s)

0

5000

10000

15000

20000

25000

30000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF SLIA

Z3
Smt.ml - Z3
cvc5
Smt.ml - cvc5

Fig. 5: Accumulated single-query results by theory.

Results. Upon comparison, we observed that all results produced by Smt.ml

were consistent with those produced by the solvers directly and aligned with the
expected results for each benchmark. This demonstrates that Smt.ml consis-
tently reproduces the behaviour of the underlying solvers without introducing
any correctness bugs.

Takeaway 1: Smt.ml does not introduce any inconsistent behaviour when com-
pared to its backend solvers.

5.3 EQ2: Single-Query Performance

To investigate whether the Smt.ml negatively impacts the performance of the
backend solvers, we execute Smt.ml on the selected dataset a single query at
a time for each solver, creating a new solver instance per query, and comparing
the runtimes obtained for each query with the runtimes obtained by running the
corresponding solvers directly on the given query.

Results. Figure 5 shows the Cumulative Distribution Function (CDF) plots for
single-query results with each sub-�gure showing the results for a speci�c theory.
From the results, we conclude the following:

� In general, the performance of Smt.ml is closely aligned with the perfor-
mance of the backend solvers when used independently.

� For the Bitwuzla solver, a slight performance degradation is observed when
comparing the results of Smt.ml-Bitwuzla to Bitwuzla alone. This is pri-

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 13

0 50 100 150 200 250 300 350
Cumulative Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF FP

Z3
Smt.ml - Z3 (multi-query)
Bitwuzla
Smt.ml - Bitwuzla (multi-query)

0 20 40 60 80 100 120 140
Cumulative Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF LIA

Z3
Smt.ml - Z3 (multi-query)

0 25 50 75 100 125 150 175 200
Cumulative Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF BV

Z3
Smt.ml - Z3 (multi-query)
Bitwuzla
Smt.ml - Bitwuzla (multi-query)

0 200 400 600 800 1000 1200 1400
Cumulative Time (s)

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF S

Z3
Smt.ml - Z3 (multi-query)

0 200 400 600 800 1000 1200 1400 1600
Cumulative Time (s)

0

500

1000

1500

2000

2500

3000

3500

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

QF SLIA

Z3
Smt.ml - Z3 (multi-query)

Fig. 6: Accumulated multi-query results by theory.

marily due to the overhead associated with bookkeeping created constants
in logical formulas � something Bitwuzla's API does not perform.

� In certain cases, such as with the QF_SLIA theory, Smt.ml outperforms the
backend solvers, solving more problem instances in less time. This perfor-
mance gain highlights the e�ectiveness of the formula simpli�cations Smt.ml
applies before querying the solvers.

Takeaway 2: Smt.ml does not degrade solver performance in single-query in-
teractions, and even improves performance for some theories.

5.4 EQ3: Multi-Query Performance

Smt.ml's main use case lies in applications that require frequent interactions
with SMT solvers, such as symbolic execution engines. To evaluate Smt.ml's
performance in such scenarios, we consider a multi-query setting where interac-
tions are batched and executed using a single solver instance. We compare the
runtimes of Smt.ml in batch mode against the accumulated runtimes obtained
by running directly each solver one query at the time.

For these experiments, we did not consider the cvc5 or Colibri2 solvers, as
their wrappers do not yet support Smt.ml's multi-query mode. In the case of
cvc5, we were unable to run the multi-query mode due to a garbage collection
issue, where solver objects are not properly reference counted and are, therefore,
prematurely collected. This issue is currently being addressed by the cvc5 devel-
opment team. For Colibri2, a bug was detected during evaluation that crashes
the solver after various push and pop operations, preventing it from being run

14 J. M. Pereira et al.

0 10000 20000 30000 40000 50000 60000
Cumulative Time (s)

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

array-examples

Z3
Smt.ml - Z3 (multi-query)
Smt.ml - Z3 (single-query)

0 500 1000 1500 2000 2500 3000 3500 4000
Cumulative Time (s)

0

2000

4000

6000

8000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

array-industry-pattern

Z3
Smt.ml - Z3 (multi-query)
Smt.ml - Z3 (single-query)

0 100 200 300 400 500 600
Cumulative Time (s)

0

2000

4000

6000

8000

10000

N
um

be
ro

fp
ro

bl
em

s
so

lv
ed

eca-rers20218

Z3
Smt.ml - Z3 (multi-query)
Smt.ml - Z3 (single-query)

Fig. 7: Smt.ml performance on the selected categories of formulas from the Test-
Comp 2023 benchmark suite.

in multi-query mode. We are currently investigating this issue in collaboration
with the Colibri2 development team.

Results. Figure 6 presents the CDF plots for the multi-query results with each
sub-�gure showing the results for a speci�c theory. From the results, we conclude
that Smt.ml's multi-query mode substantially outperforms the base solvers
when used in single-query mode for all theories. This is expected given that, when
executing base solvers independently, a new solver instance needs to be created
for each query, incurring in signi�cant overhead due to the solver's initialisation
and setup. In Smt.ml's multi-query mode, the solver instance is reused during
the batched interaction, avoiding this overhead and leading to substantial per-
formance improvements. Furthermore, Smt.ml's caching mechanisms contribute
to this performance boost by reusing previously computed satis�ability results.

Takeaway 3: Smt.ml signi�cantly improves performance in multi-query
solver interactions.

6 Case Study

To demonstrate the practical utility of Smt.ml, we describe its application in
the development of Owi [3], a novel symbolic execution tool for WebAssembly
(Wasm). Owi was originally conceived as a concrete interpreter for WebAssembly,
which we later parameterized on a generic value interface, allowing it to handle
both concrete and symbolic values. By using Smt.ml's expressions as Owi's
values, we obtained a new symbolic interpreter for Wasm tightly connected to
the formal semantics of the language. The details of this parameterization can
be found in [3].

To evaluate the impact of Smt.ml within the Owi framework, we exe-
cuted Owi on three distinct categories of formulas from the Test-Comp 2023
benchmark suite [9], a well recognized standard for evaluating symbolic exe-
cution tools. Throughout the execution process, all generated formulas were
serialized for further analysis. We selected the categories array-examples,

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 15

array-industry-pattern, and eca-rers2018, as they o�er a diverse representa-
tion of bitvector (QF_BV) formulas commonly encountered in symbolic execution
contexts. Subsequently, we used Smt.ml with the Z3 backend to solve the seri-
alized formulas and compared its performance against executing the Z3 solver
directly on each formula.

Results. Figure 7 illustrates the CDF plots for the three selected categories from
the Test-Comp 2023 benchmark suite. The results indicate that using Smt.ml's
multi-query mode with Z3 as the backend signi�cantly improves performance
compared to both running Z3 directly on each formula and using Smt.ml in
single-query mode.

Discussion. Currently, several other ongoing research projects use Smt.ml, in-
cluding a new symbolic executor for JavaScript [20] and a new tool for exploit
generation for Node.js packages, which was built on top of a state-of-the-art static
analyser for vulnerability detection in JavaScript [25]. Numerous applications,
particularly in the �elds of systems construction and analysis, could bene�t from
adopting Smt.ml. It is open-source and available in Smt.ml's GitHub repos-
itory.5 Additionally, Smt.ml is also available as an OPAM package,6 greatly
simplifying its adoption and integration by the OCaml community.

7 Related Work

SMT Solvers SMT solvers have seen signi�cant advancements since their emer-
gence in the early 2000s [5, 7, 21�23], such as support for new theories, like
strings [36] and quanti�ed arithmetic [1], and new optimisation techniques, like
new caching mechanisms [52] and portfolio strategies [44, 48]. As a result of this,
they are now used across the entire computer science community, with a wide
variety of applications ranging from software veri�cation and test generation [28,
32, 34] to combinatorial optimisation and classical operations research [10].

Currently, many SMT solvers are actively maintained, with 20 submitted
to the 2024 edition of SMT-COMP [13]. Importantly, there is no one-size-�ts-
all solver; some solvers excel in certain theories, while others excel in others.
Our selection of SMT solvers for integration within Smt.ml was driven by our
speci�c needs. Initially, we supported the Z3 [22] and Colibri2 [11] solvers, as
they were already being used in our ongoing projects. Subsequently, we added
support for cvc5 [5] and Bitwuzla [40] due to their excellent performance in the
theories of bitvectors and �oating-point arithmetic, which are frequently required
in symbolic execution contexts. In the future, we plan to incorporate support for
additional solvers.

5 https://github.com/formalsec/smtml
6 https://opam.ocaml.org/packages/smtml/

16 J. M. Pereira et al.

Frontends for SMT Solvers Frontends play an essential role in making SMT
solvers more accessible to the wider computer science audience. These interfaces
often come with user-friendly input languages that are both more expressive
and closer to real-world problem domains than the logics of existing solvers,
streamlining user interaction. Frontends also facilitate integration with high-
level programming languages, allowing SMT-solving capabilities to be seamlessly
embedded into applications and formal veri�cation processes.

PySMT [29] and Smt-Switch [37] are examples of frontends for solvers in
Python and C++, respectively. They equip users with a high-level API for inter-
acting with various SMT solvers, abstracting the low-level solver-speci�c details.
Both frontends support �ve SMT solvers:

� PySMT: Z3, cvc5, Yices2 [23], Bitwuzla, and MathSAT [14];
� Smt-Switch: Z3, cvc5, Yices2, MathSAT, and Boolector [41].

PySMT further implements a solver-agnostic optimization layer that simpli�es
the given formulas by applying a set of simpli�cation rules similar to ours. These
are the two tools closest in spirit to Smt.ml; however, unlike them, Smt.ml has
the additional advantage of having an integrated caching system, which is essen-
tial for containing memory consumption in our target applications. Furthermore,
Smt.ml is the �rst such frontend for the OCaml programming language.

Solver-aided languages, such as Rosette [50] and Why3 [27], o�er a �exible
approach to writing programs that interact with SMT solvers to reason about
logical formulas in multiple �rst-order theories. Rosette extends the Racket pro-
gramming language [24] with a symbolic compiler that translates solver-aided
programs into logical constraints, enabling seamless interaction with SMT solvers
for tasks like program synthesis [2, 12] and test generation [47]. Similarly, Why3,
an OCaml-based platform, supports formal program veri�cation by translating
high-level program speci�cations into veri�cation conditions that various SMT
solvers can process.

8 Conclusions

We presented Smt.ml, a novel OCaml frontend for multiple SMT solvers. In
contrast to existing frontends for SMT solvers in other languages, Smt.ml in-
corporates a solver-agnostic caching system and a set of formula simpli�cations
that boost its performance, even in single-query interactions. We further demon-
strate that, when used in multi-query mode, Smt.ml substantially outperforms
the direct use of native SMT solvers.

In the future, we plan to extend this work in various ways:

� We will support new solver backends. Currently, there is already an ongoing
e�ort to integrate the Alt-Ergo solver [19] into our infrastructure.

� We will improve the solver wrappers for cvc5 and Colibri2, enabling them
to support batched interactions.

� We will o�er users the possibility to create solver portfolios parameterized
on solver selection strategies.

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 17

References

1. Ábrahám, E., Kremer, G.: SMT solving for arithmetic theories: Theory and tool
support. In: 2017 19th International Symposium on Symbolic and Numeric Algo-
rithms for Scienti�c Computing (SYNASC). pp. 1�8. IEEE (2017)

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. IEEE
(2013)

3. Andrès, L., Marques, F., Carcano, A., Chambart, P., Fragoso Femenin dos Santos,
J., Filliâtre, J.C.: Owi: Performant Parallel Symbolic Execution Made Easy, an
Application to WebAssembly. The Art, Science, and Engineering of Programming
9(2) (Oct 2024), https://hal.science/hal-04627413

4. Baldoni, R., Coppa, E., D'elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Computing Surveys (CSUR) 51(3), 1�39 (2018)

5. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.: cvc5: A versatile and
industrial-strength SMT solver. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 415�442. Springer (2022)

6. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable veri�er for object-oriented programs. In: Formal Methods for
Components and Objects: 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures 4. pp. 364�387. Springer
(2006)

7. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: Cvc4. In: Computer Aided Veri�cation: 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23. pp.
171�177. Springer (2011)

8. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0.
In: Proceedings of the 8th international workshop on satis�ability modulo theories
(Edinburgh, UK). vol. 13, p. 14 (2010)

9. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp 2023. Funda-
mental Approaches to Software Engineering LNCS 13991 p. 309 (2023)

10. Bjørner, N., Levatich, M., Lopes, N.P., Rybalchenko, A., Vuppalapati, C.: Super-
charging Plant Con�gurations Using Z3. In: Proc. of the 18th International Confer-
ence on Integration of Constraint Programming, Arti�cial Intelligence, and Oper-
ations Research (CPAIOR) (Jul 2021). https://doi.org/10.1007/978-3-030-78230-
6_1

11. Bobot, F., Marre, B., Bury, G., Graham-Lengrand, S., Ait El Hara, H.R.:
Colibri2. webpage: https://colibri.frama-c.com, source code: https://git.frama-
c.com/pub/colibrics

12. Bodík, R., Jobstmann, B.: Algorithmic program synthesis: introduction. Interna-
tional journal on software tools for technology transfer 15, 397�411 (2013)

13. Bromberger, M., Bobot, F., , et al.: The International Satis�ability Modulo Theo-
ries Competition (SMT-COMP)(2024). https://smt-comp.github.io/

14. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MATH-
SAT 4 SMT solver: Tool paper. In: Computer Aided Veri�cation: 20th International
Conference, CAV 2008 Princeton, NJ, USA, July 7-14, 2008 Proceedings 20. pp.
299�303. Springer (2008)

15. Bryce, D., Gao, S., Musliner, D., Goldman, R.: SMT-based nonlinear PDDL+
planning. In: Proceedings of the AAAI Conference on Arti�cial Intelligence. vol. 29
(2015)

18 J. M. Pereira et al.

16. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: OSDI. vol. 8,
pp. 209�224 (2008)

17. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Communications of the ACM 56(2), 82�90 (2013)

18. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on Binary
Code. In: 2012 IEEE Symposium on Security and Privacy. pp. 380�394 (2012).
https://doi.org/10.1109/SP.2012.31

19. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT
Workshop: International Workshop on Satis�ability Modulo Theories (2018)

20. Costa, M.: Memory Models for Symbolic Execution of JavaScript Applications.
Master's thesis, Instituto Superior Técnico, University of Lisboa, Portugal (2023)

21. Damm, W., Hermanns, H.: Computer Aided Veri�cation: 19th International Con-
ference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, vol. 4590.
Springer (2007)

22. De Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337�
340. Springer (2008)

23. Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Veri�ca-
tion. pp. 737�744. Springer (2014)

24. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,
J., Tobin-Hochstadt, S.: The racket manifesto. In: 1st Summit on Advances in
Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2015)

25. Ferreira, M., Monteiro, M., Brito, T., Coimbra, M.E., Santos, N., Jia, L., Santos,
J.F.: E�cient Static Vulnerability Analysis for JavaScript with Multiversion De-
pendency Graphs. Proceedings of the ACM on Programming Languages 8(PLDI),
417�441 (2024)

26. Filliâtre, J.C., Conchon, S.: Type-safe modular hash-consing. In: Proceedings of
the 2006 Workshop on ML. p. 12�19. ML '06, Association for Computing Ma-
chinery, New York, NY, USA (2006). https://doi.org/10.1145/1159876.1159880,
https://doi.org/10.1145/1159876.1159880

27. Filliâtre, J.C., Paskevich, A.: Why3�where programs meet provers. In: Program-
ming Languages and Systems: 22nd European Symposium on Programming, ESOP
2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 22. pp. 125�
128. Springer (2013)

28. Fragoso Santos, J., Maksimovi¢, P., Ayoun, S.É., Gardner, P.: Gillian, part i: a
multi-language platform for symbolic execution. In: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp.
927�942 (2020)

29. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT workshop. vol. 2015 (2015)

30. Hutton, G.: Programming in haskell. Cambridge University Press (2016)
31. IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019)
32. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:

VeriFast: A powerful, sound, predictable, fast veri�er for C and Java. In: NASA
formal methods symposium. pp. 41�55. Springer (2011)

Smt.ml: A Multi-Backend Frontend for SMT Solvers in OCaml 19

33. Lee, J., Kim, D., Hur, C.K., Lopes, N.P.: An SMT encoding of LLVM's
memory model for bounded translation validation. In: Proc. of the 33rd
International Conference on Computer-Aided Veri�cation (CAV) (Jul 2021).
https://doi.org/10.1007/978-3-030-81688-9_35

34. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment.
arXiv preprint arXiv:1404.6602 (2014)

35. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Sivaramakrishnan, K.,
Vouillon, J.é.: The OCaml system release 5.1: Documentation and user's manual.
Ph.D. thesis, Inria (2023)

36. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
e�cient SMT solver for string constraints. Formal Methods in System Design 48,
206�234 (2016)

37. Mann, M., Wilson, A., Zohar, Y., Stuntz, L., Irfan, A., Brown, K., Donovick, C.,
Guman, A., Tinelli, C., Barrett, C.: SMT-switch: a solver-agnostic C++ API for
SMT solving. In: International Conference on Theory and Applications of Satis�-
ability Testing. pp. 377�386. Springer (2021)

38. Marques, F., Fragoso Santos, J., Santos, N., Ad ão, P.: Concolic Execution for
WebAssembly. In: 36th European Conference on Object-Oriented Programming
(ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

39. Minsky, Y., Madhavapeddy, A., Hickey, J.: Real World OCaml: Functional pro-
gramming for the masses. " O'Reilly Media, Inc." (2013)

40. Niemetz, A., Preiner, M.: Bitwuzla. In: International Conference on Computer
Aided Veri�cation. pp. 3�17. Springer (2023)

41. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, btormc and boolector 3.0. In:
International Conference on Computer Aided Veri�cation. pp. 587�595. Springer
(2018)

42. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala pro-
gramming language (2004)

43. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In: Com-
puter Aided Veri�cation: 25th International Conference, CAV 2013, Saint Peters-
burg, Russia, July 13-19, 2013. Proceedings 25. pp. 53�68. Springer (2013)

44. Pimpalkhare, N., Mora, F., Polgreen, E., Seshia, S.A.: MedleySolver: online SMT
algorithm selection. In: Theory and Applications of Satis�ability Testing�SAT
2021: 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceed-
ings 24. pp. 453�470. Springer (2021)

45. Preiner, M., Schurr, H.J., Barrett, C., Fontaine, P., Niemetz,
A., Tinelli, C.: SMT-LIB release 2024 (non-incremental bench-
marks) (Apr 2024). https://doi.org/10.5281/zenodo.11061097,
https://doi.org/10.5281/zenodo.11061097

46. Rakadjiev, E., Shimosawa, T., Mine, H., Oshima, S.: Parallel SMT solving and
concurrent symbolic execution. In: 2015 IEEE Trustcom/BigDataSE/ISPA. vol. 3,
pp. 17�26. IEEE (2015)

47. Santos, J.F., Maksimovi¢, P., Grohens, T., Dolby, J., Gardner, P.: Symbolic ex-
ecution for JavaScript. In: Proceedings of the 20th International Symposium on
Principles and Practice of Declarative Programming. pp. 1�14 (2018)

48. Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh, V.: Algorithm selection
for SMT: MachSMT: machine learning driven algorithm selection for SMT solvers.
International Journal on Software Tools for Technology Transfer 25(2), 219�239
(2023)

20 J. M. Pereira et al.

49. Slivkins, A., et al.: Introduction to multi-armed bandits. Foundations and Trends®
in Machine Learning 12(1-2), 1�286 (2019)

50. Torlak, E., Bodik, R.: Growing solver-aided languages with Rosette. In: Proceed-
ings of the 2013 ACM international symposium on New ideas, new paradigms, and
re�ections on programming & software. pp. 135�152 (2013)

51. Tuong, F., Le Fessant, F., Gazagnaire, T.: OPAM: an OCaml packa manager. In:
ACM SIGPLAN OCaml Users and Developers Workshop (2012)

52. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th Inter-
national Symposium on the Foundations of Software Engineering. pp. 1�11 (2012)

53. Wilson, A., Noetzli, A., Reynolds, A., Cook, B., Tinelli, C., Barrett, C.W.: Parti-
tioning Strategies for Distributed SMT Solving. In: FMCAD. pp. 199�208 (2023)

